Monday, 26 June 2017

Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence...

The Integral test is applicable if is positive and decreasing function on infinite interval where and . Then the series converges if and only if the improper integral converges. If the integral diverges then the series also diverges.

For the given series , the .


Then applying , we consider:



The graph of f(x) is:



As shown on the graph, f is positive on the finite interval . To verify of the function will eventually decreases on the given interval, we may consider derivative of the function.


Apply Quotient rule for derivative: .


Let then


      then


Applying the formula,we get:



       


       


Note that for larger values of x which means .Based on the First derivative test, if  has a negative value then the function is decreasing for a given interval . This confirms that the function is ultimately decreasing as . Therefore, we may apply the Integral test to confirm the convergence or divergence of the given series.


We may determine the convergence or divergence of the improper integral as:



To determine the indefinite integral of , we may apply integration by parts:


then


then  


Note: To determine v, apply Power rule for integration



               


               


               


The integral becomes: 



                   


                   


                   


                   


Apply definite integral formula: .



                     


                     


                     


Apply  , we get:



                                 


                               


Note: 


         


     


                             


Apply L' Hospitals rule:



                       


                       


The    implies that the integral converges.


Conclusion: The integral    is convergent therefore the series  must also be convergent

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...