`int 5/(x^2+3x-4)dx`
To solve using partial fraction, the denominator of the integrand should be factored.
`5/(x^2+3x-4)=5/((x+4)(x-1))`
Then, express it as sum of fractions.
`5/((x+4)(x-1))=A/(x+4)+B/(x-1)`
To determine the values of A and B, multiply both sides by the LCD of the fractions present.
`(x+4)(x-1)*5/((x+4)(x-1))=(A/(x+4)+B/(x-1))*(x+4)(x-1)`
`5=A(x-1)+B(x+4)`
Then, assign values to x in which either x+4 or x-1 will become zero.
So plug-in x=-4 to get the value of A.
`5=A(-4-1)+B(-4+4)`
`5=A(-5)+B(0)`
`5=-5A`
`-1=A`
Also, plug-in x=1
`5=A(1-1)+B(1+4)`
...
`int 5/(x^2+3x-4)dx`
To solve using partial fraction, the denominator of the integrand should be factored.
`5/(x^2+3x-4)=5/((x+4)(x-1))`
Then, express it as sum of fractions.
`5/((x+4)(x-1))=A/(x+4)+B/(x-1)`
To determine the values of A and B, multiply both sides by the LCD of the fractions present.
`(x+4)(x-1)*5/((x+4)(x-1))=(A/(x+4)+B/(x-1))*(x+4)(x-1)`
`5=A(x-1)+B(x+4)`
Then, assign values to x in which either x+4 or x-1 will become zero.
So plug-in x=-4 to get the value of A.
`5=A(-4-1)+B(-4+4)`
`5=A(-5)+B(0)`
`5=-5A`
`-1=A`
Also, plug-in x=1
`5=A(1-1)+B(1+4)`
`5=A(0)+B(5)`
`5=5B`
`1=B`
So the partial fraction decomposition of the integrand is
`int 5/(x^2+3x-4)dx`
`= int 5/((x+4)(x-1))dx`
`= int (-1/(x+4)+1/(x-1))dx`
Then, express it as two integrals.
`= int -1/(x+4)dx + int 1/(x-1)dx`
`= - int 1/(x+4)+int 1/(x-1)dx`
To take the integral, apply the formula `int 1/u du = ln|u| + C` .
`= -ln|x+4| + ln|x-1| + C`
Therefore, `int 5/(x^2+3x-4)dx= -ln|x+4| + ln|x-1| + C` .
No comments:
Post a Comment