Friday, 2 June 2017

Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of about a single point. It is represented by infinite sum of  centered at . The general formula for Taylor series is:


or



To determine the Taylor series for the function centered at , we may list the as:



Applying derivative formula for logarithmic function: d .


Let then



       


       


Applying Quotient rule for differentiation: .


Let then


      then  and



       


       


     



Let then


     


then 


and



        


       


       


       


       



Let  then


     


then


             


             


      then


               



        


       


       


       





Plug-in for each , we get:



        


        



         


         



         


         



          


          



          


          



          


          



          


          


Applying the formula for Taylor series, we get:



 







The Taylor series of the function centered at is:



or


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...