Given` y'+y tanx = secx`
when the first order linear ordinary Differentian equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx) `
so,
`y'+y tanx = secx--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = tanx and q(x)=sec x`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
=`((int e^(int tanx dx) *(secx))...
Given` y'+y tanx = secx`
when the first order linear ordinary Differentian equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx) `
so,
`y'+y tanx = secx--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = tanx and q(x)=sec x`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
=`((int e^(int tanx dx) *(secx)) dx +c)/e^(int tanx dx) `
first we shall solve
`e^(int tanx dx)=e^(ln(secx)) = sec x `
as we know`int tanx dx = ln(secx)`
So, proceeding further, we get
y(x) =`((int secx *secx) dx +c)/secx `
=`(int sec^2 x dx +c)/secx`
=`(tanx+c)/secx`
=`tanx/secx + c/secx`
`y(x)=sinx+ c*cosx`
No comments:
Post a Comment