`int(3-x)/(3x^2-2x-1)dx`
Let's use partial fraction decomposition on the integrand,
`(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)`
`=(3-x)/(x(3x+1)-1(3x+1))`
`=(3-x)/((3x+1)(x-1))`
Now form the partial fractions using the denominator,
`(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)`
Multiply equation by the denominator `(3x+1)(x-1)`
`=>(3-x)=A(x-1)+B(3x+1)`
`=>3-x=Ax-A+3Bx+B`
`=>3-x=(A+3B)x+(-A+B)`
comparing the coefficients of the like terms,
`A+3B=-1` ----------------(1)
`-A+B=3` ----------------(2)
Now let's solve the above equations to get A and B,
Add the equations 1 and 2,
`4B=-1+3`
`4B=2`
`B=2/4`
`B=1/2`
Plug in the value of B in equation 1,
`A+3(1/2)=-1`
`A+3/2=-1`
`A=-1-3/2`
...
`int(3-x)/(3x^2-2x-1)dx`
Let's use partial fraction decomposition on the integrand,
`(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)`
`=(3-x)/(x(3x+1)-1(3x+1))`
`=(3-x)/((3x+1)(x-1))`
Now form the partial fractions using the denominator,
`(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)`
Multiply equation by the denominator `(3x+1)(x-1)`
`=>(3-x)=A(x-1)+B(3x+1)`
`=>3-x=Ax-A+3Bx+B`
`=>3-x=(A+3B)x+(-A+B)`
comparing the coefficients of the like terms,
`A+3B=-1` ----------------(1)
`-A+B=3` ----------------(2)
Now let's solve the above equations to get A and B,
Add the equations 1 and 2,
`4B=-1+3`
`4B=2`
`B=2/4`
`B=1/2`
Plug in the value of B in equation 1,
`A+3(1/2)=-1`
`A+3/2=-1`
`A=-1-3/2`
`A=-5/2`
Plug in the value of A and B in the partial fraction template,
`=(-5/2)/(3x+1)+(1/2)/(x-1)`
`=-5/(2(3x+1))+1/(2(x-1))`
So, `int(3-x)/(3x^2-2x-1)dx=int(-5/(2(3x+1))+1/(2(x-1)))dx`
Apply the sum rule,
`=int-5/(2(3x+1))dx+int1/(2(x-1))dx`
Take the constant out,
`=-5/2int1/(3x+1)dx+1/2int1/(x-1)dx`
Now let's evaluate both the above integrals separately,
`int1/(3x+1)dx`
Apply integral substitution:`u=3x+1`
`=>du=3dx`
`=int1/u(du)/3`
Take the constant out,
`=1/3int1/udu`
Use the common integral:`int1/xdx=ln|x|`
`=1/3ln|u|`
Substitute back `u=3x+1`
`=1/3ln|3x+1|`
Now evaluate the second integral.
`int1/(x-1)dx`
Apply integral substitution: `u=x-1`
`du=1dx`
`=int1/udu`
Use the common integral:`int1/xdx=ln|x|`
`=ln|u|`
Substitute back `u=x-1`
`=ln|x-1|`
`int(3-x)/(3x^2-2x-1)dx=-5/2(1/3ln|3x+1|)+1/2ln|x-1|`
Simplify and add a constant C to the solution,
`=-5/6ln|3x+1|+1/2ln|x-1|+C`
No comments:
Post a Comment