Saturday, 18 February 2017

`int (3-x) / (3x^2-2x-1) dx` Use partial fractions to find the indefinite integral

`int(3-x)/(3x^2-2x-1)dx`


Let's use partial fraction decomposition on the integrand,


`(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)`


`=(3-x)/(x(3x+1)-1(3x+1))`


`=(3-x)/((3x+1)(x-1))`


Now form the partial fractions using the denominator,


`(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)`


Multiply equation by the denominator `(3x+1)(x-1)`


`=>(3-x)=A(x-1)+B(3x+1)`


`=>3-x=Ax-A+3Bx+B`


`=>3-x=(A+3B)x+(-A+B)`


comparing the coefficients of the like terms,


`A+3B=-1`   ----------------(1)


`-A+B=3`      ----------------(2)


Now let's solve the above equations to get A and B,


Add the equations 1 and 2,


`4B=-1+3`


`4B=2`


`B=2/4`


`B=1/2`


Plug in the value of B in equation 1,


`A+3(1/2)=-1`


`A+3/2=-1`


`A=-1-3/2`


...

`int(3-x)/(3x^2-2x-1)dx`


Let's use partial fraction decomposition on the integrand,


`(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)`


`=(3-x)/(x(3x+1)-1(3x+1))`


`=(3-x)/((3x+1)(x-1))`


Now form the partial fractions using the denominator,


`(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)`


Multiply equation by the denominator `(3x+1)(x-1)`


`=>(3-x)=A(x-1)+B(3x+1)`


`=>3-x=Ax-A+3Bx+B`


`=>3-x=(A+3B)x+(-A+B)`


comparing the coefficients of the like terms,


`A+3B=-1`   ----------------(1)


`-A+B=3`      ----------------(2)


Now let's solve the above equations to get A and B,


Add the equations 1 and 2,


`4B=-1+3`


`4B=2`


`B=2/4`


`B=1/2`


Plug in the value of B in equation 1,


`A+3(1/2)=-1`


`A+3/2=-1`


`A=-1-3/2`


`A=-5/2`


Plug in the value of A and B in the partial fraction template,


`=(-5/2)/(3x+1)+(1/2)/(x-1)`


`=-5/(2(3x+1))+1/(2(x-1))`


So, `int(3-x)/(3x^2-2x-1)dx=int(-5/(2(3x+1))+1/(2(x-1)))dx`


Apply the sum rule,


`=int-5/(2(3x+1))dx+int1/(2(x-1))dx`


Take the constant out,


`=-5/2int1/(3x+1)dx+1/2int1/(x-1)dx`


Now let's evaluate both the above integrals separately,


`int1/(3x+1)dx`


Apply integral substitution:`u=3x+1`


`=>du=3dx`


`=int1/u(du)/3`


Take the constant out,


`=1/3int1/udu`


Use the common integral:`int1/xdx=ln|x|`


`=1/3ln|u|`


Substitute back `u=3x+1`


`=1/3ln|3x+1|`


Now evaluate the second integral.


`int1/(x-1)dx`


Apply integral substitution: `u=x-1`


`du=1dx`


`=int1/udu`


Use the common integral:`int1/xdx=ln|x|`


`=ln|u|`


Substitute back `u=x-1`


`=ln|x-1|`


`int(3-x)/(3x^2-2x-1)dx=-5/2(1/3ln|3x+1|)+1/2ln|x-1|` 


Simplify and add a constant C to the solution,


`=-5/6ln|3x+1|+1/2ln|x-1|+C`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...