Tuesday, 14 February 2017

`lim_(x->oo) x^3/e^(x/2)` Evaluate the limit, using L’Hôpital’s Rule if necessary.


Given to solve,


`lim_(x->oo) x^3/(e^(x/2))`


as `x->oo` then the `x^3/(e^(x/2))=oo/oo` form


so upon applying the L 'Hopital rule we get the solution as follows,


as for the general equation it is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now evaluating


`lim_(x->oo) (x^3)/(e^(x/2))`


=`lim_(x->oo) ((x^3)')/((e^(x/2))')`


= `lim_(x->oo) (3x^2)/((e^(x/2))(1/2))`


again `(3x^2)/((e^(x/2))(1/2))` is of the form `oo/oo`...



Given to solve,


`lim_(x->oo) x^3/(e^(x/2))`


as `x->oo` then the `x^3/(e^(x/2))=oo/oo` form


so upon applying the L 'Hopital rule we get the solution as follows,


as for the general equation it is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now evaluating


`lim_(x->oo) (x^3)/(e^(x/2))`


=`lim_(x->oo) ((x^3)')/((e^(x/2))')`


= `lim_(x->oo) (3x^2)/((e^(x/2))(1/2))`


again `(3x^2)/((e^(x/2))(1/2))` is of the form `oo/oo` so , applying the L'Hopital Rule we get


= `lim_(x->oo) (3x^2)/((e^(x/2))(1/2))`


= `lim_(x->oo) ((3x^2)')/(((e^(x/2))(1/2))')`


=`lim_(x->oo) ((6x))/(((e^(x/2))(1/2)(1/2)))`


=`lim_(x->oo) ((6x))/(((e^(x/2))(1/4)))`


again `((6x))/(((e^(x/2))(1/4))) ` is of the form `oo/oo` so , applying the L'Hopital Rule we get


=`lim_(x->oo) ((6x))/(((e^(x/2))(1/4)))`

=`lim_(x->oo) ((6x)')/(((e^(x/2))(1/4))')`


=`lim_(x->oo) ((6))/(((e^(x/2))(1/4)(1/2)))`


=`lim_(x->oo) ((6))/(((e^(x/2))(1/8)))`


=`lim_(x->oo) ((6*8))/(((e^(x/2))))`


=`lim_(x->oo) ((48))/(((e^(x/2))))`


upon plugging the value of `x= oo`


 we get


=`lim_(x->oo) ((48))/(((e^((oo)/2))))`


=`lim_(x->oo) ((48))/(oo)`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...