Monday, 28 March 2016

`log_4(-x)+log_4(x+10)=2` Solve the equation. Check for extraneous solutions.

To evaluate the given equation `log_4(-x)+log_4(x+10)=2` , we may apply the logarithm property: `log_b(x)+log_b(y)=log_b(x*y)` .


`log_4(-x)+log_4(x+10)=2`


`log_4((-x)*(x+10))=2`


`log_4(-x^2-10x)=2`


To get rid of the "log" function, we may apply the logarithm property: `b^(log_b(x))=x.`


Raise both sides by base of `4` .


`4^(log_4(-x^2-10x))=4^2`


`-x^2-10x=16`


Add `x^2` and `10x` on both sides of the equation to simplify in standard form: `ax^2+bx+c= 0.`


`-x^2-10x+x^2+10x=16+x^2+10x`


`0=16+x^2+10x orx^2+10x+16=0.`


Apply factoring on the trinomial.


`(x+2)(x+8)=0`


Apply zero-factor property to solve for x...

To evaluate the given equation `log_4(-x)+log_4(x+10)=2` , we may apply the logarithm property: `log_b(x)+log_b(y)=log_b(x*y)` .


`log_4(-x)+log_4(x+10)=2`


`log_4((-x)*(x+10))=2`


`log_4(-x^2-10x)=2`


To get rid of the "log" function, we may apply the logarithm property: `b^(log_b(x))=x.`


Raise both sides by base of `4` .


`4^(log_4(-x^2-10x))=4^2`


`-x^2-10x=16`


Add `x^2` and `10x` on both sides of the equation to simplify in standard form: `ax^2+bx+c= 0.`


`-x^2-10x+x^2+10x=16+x^2+10x`


`0=16+x^2+10x orx^2+10x+16=0.`


Apply factoring on the trinomial.


`(x+2)(x+8)=0`


Apply zero-factor property to solve for x by equating each factor to `0` .


`x+2=0`


`x+2-2=0-2`


`x=-2`


and


`x+8=0`


` x+8-8=0-8 `


`x=-8`


Checking: Plug-in each `x ` on `log_4(-x)+log_4(x+10)=2` .


Let `x=-2` on ` log_4(-x)+log_4(x+10)=2` .


`log_4(-(-2))+log_4(-2+10)=?2`


`log_4(2)+log_4(8)=?2`


`log_4(2*8)=?2`


`log_4(16)=?2`


`log_4(4^2)=?2`


`2log_4(4)=?2`


`2*1=?2`


`2=2`        TRUE


Let `x=-8` on `log_4(-x)+log_4(x+10)=2.`


`log_4(-(-8))+log_4(-8+10)=?2`


`log_4(8)+log_4(2)=?2`


`log_4(8*2)=?2`


`log_4(16)=?2`


`2=2 `        TRUE


Therefore, there are no extraneous solutions.


Both solved x-values: `x=-2` and `x=-8` are real solution of the equation `log_4(-x)+log_4(x+10)=2` .

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...