Maclaurin series is a special case of Taylor series that is centered at `c=0` . The expansion of the function about `0` follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin polynomial of degree n=4 for the given function `f(x)=x^2e^(-x)` , we may apply the formula for Maclaurin series.
To list `f^n(x) ` up to `n=4` , we may apply the following formula:
Product rule for differentiation: `d/(dx) (u*v) = u' *v +u*v' `
Derivative property: `d/(dx) (f+-g+-h) = d/(dx) f +-d/(dx) g+-d/(dx) h`
Power rule for differentiation: `d/(dx) x^n =n*x^(n-1)`
Derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)`
`f(x)=x^2e^(-x)`
Let `u =x^2` then `u' = 2x`
`v = e^(-x)` then `v' = e^x*(-1) =-e^(-x)`
`d/(dx) (x^2e^(-x)) = 2x*e^(-x) + x^2*(-e^(-x))`
`= 2xe^(-x) -x^2e^(-x)`
Let: `u =x` then `u' =1`
`v = e^(-x)` then `v' =-e^(-x)`
Note: `c` = constant value.
`d/(dx) c*xe^(-x) = c*d/(dx) xe^(-x)`
`= c*[1*e^x +x * (-e^(-x))]`
` = c*[e^x-xe^(-x)]`
` = ce^x-cxe^(-x)`
`d/(dx) c*e^(-x) = c*d/(dx) e^(-x)`
`=c*(-e^(-x))`
`=-ce^(-x)`
`f'(x) =d/(dx) (x^2e^(-x))`
`= 2xe^(-x) -x^2e^(-x)`
`f^2(x) = d/(dx) (2xe^(-x) -x^2e^(-x))`
`=d/(dx) 2xe^(-x) -d/(dx) x^2e^(-x)`
`= [2e^(-x)-2xe^(-x)] - [2xe^(-x) -x^2e^(-x)]`
`=2e^(-x)-2xe^(-x) - 2xe^(-x) +x^2e^(-x)`
`=2e^(-x)-4xe^(-x) +x^2e^(-x)`
`f^3(x) = d/(dx) (2e^(-x)-4xe^(-x) +x^2e^(-x))`
`=d/(dx) 2e^(-x) -d/(dx) 4xe^(-x)+ d/(dx) x^2e^(-x)`
`=[-2e^(-x)] -[4e^(-x)-4xe^(-x)]+ [2xe^(-x) -x^2e^(-x)]`
`=- 2e^(-x) -4e^(-x)+4xe^(-x)+ 2xe^(-x) -x^2e^(-x)`
`=- 6e^(-x)+6xe^(-x) -x^2e^(-x)`
`f^4(x) = d/(dx) ( - 6e^(-x)+6xe^(-x) -x^2e^(-x))`
`=d/(dx) (-6e^(-x)) + d/(dx) 6xe^(-x)- d/(dx) x^2e^(-x)`
`=[ 6e^(-x)]+[6e^(-x)-6xe^(-x)] -[2xe^(-x) -x^2e^(-x)]`
`=6e^(-x)+6e^(-x)-6xe^(-x) -2xe^(-x) +x^2e^(-x)`
`=12e^(-x)-8xe^(-x) +x^2e^(-x)`
Plug-in `x=0` for each` f^n(x)` , we get:
`f(0)=0^2e^(-0)`
`=0*1`
`=0`
`f'(0)=2*0*e^(-0) -0^2e^(-0)`
`=2*0*1 +0*1`
`=0`
`f^2(0)=2e^(-0)-4*0*e^(-0) +0^2e^(-0)`
`=2*1 -4*0*1 +0*1`
` =2`
`f^3(0)=- 6e^(-0)+6*0*e^(-0) -0^2e^(-0)`
`=-6*1 +6*0*1 +0*1`
`=-6`
`f^4(0)=12e^(-0)-8*0*e^(-0) +0^2e^(-0)`
` =12*1 -8*0*1 +0*1`
`=12`
Note: `e^(-0) = e^0 =1` .
Plug-in the values on the formula for Maclaurin series, we get:
`sum_(n=0)^4 (f^n(0))/(n!) x^n`
`= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4`
`= 0+0/(1!)x+2/(2!)x^2+(-6)/(3!)x^3+12/(4!)x^4`
`= 0+0/1x+2/2x^2-6/6x^3+12/24x^4`
`= 0+0+x^2-x^3+1/2x^4`
`= x^2-x^3+1/2x^4`
The Maclaurin polynomial of degree `n=4` for the given function `f(x)=x^2e^(-x)` will be:
`P(x)=x^2-x^3+1/2x^4`
No comments:
Post a Comment