Tuesday, 22 March 2016

Find the n'th Maclaurin polynomial for the function.

Maclaurin series is a special case of Taylor series that is centered at . The expansion of the function about follows the formula:


 or



To determine the Maclaurin polynomial of degree n=4 for the given function , we may apply the formula for Maclaurin series.


To list up to , we may apply the following formula:


Product rule for differentiation:


Derivative property:


Power rule for differentiation:


Derivative formula for exponential function:



Let then


       then



                       


Let: then


          then


Note: = constant value.



                     


                     


                     



                  


                  




           



            


            


            


            



            


            


            


             



          


         


         


          


Plug-in for each , we get:



          


          



           


           



            


             



           


           



            


            


Note: .


Plug-in the values on the formula for Maclaurin series, we get:



     


     


      


      


      


The Maclaurin polynomial of degree for the given function will be:


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...