Maclaurin series is a special case of Taylor series that is centered at `a=0` . The expansion of the function about 0 follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin polynomial of degree `n=4` for the given function `f(x)=x/(x+1)` , we may apply the formula for Maclaurin series.
The list `f^n(x)` up to `n=4` will be:
`f(x)=x/(x+1)`
Apply the Quotient rule for differentiation: `d/(dx) (u/v) = (u' *v -u*v' )/v^2`
Let `u = x` then `u'=1`
`v = x+1` then `v' =1` and `v^2= (x+1)^2`
`f'(x) = d/(dx) (x/(x+1))`
`=(1 *(x+1) -x*1)/(x+1)^2`
`=((x+1) -x)/(x+1)^2`
`=(x+1 -x)/(x+1)^2`
`=1/(x+1)^2`
Apply Law of Exponent: `1/x^n = x^(-n)` and Power Rule for differentiation: `d/(dx) u^n= n* u^(n-1) *(du)/(dx).`
Let: ` u =x+1` then `(du)/(dx) = 1`
`d/(dx) c*(x+1)^n = c *d/(dx) (x+1)^n`
` = c *(n* (x+1)^(n-1)*1)`
` = cn(x+1)^(n-1)`
`f^2(x)= d/(dx) (1/(x+1)^2)`
`= d/(dx) (1)(x+1)^(-2)`
`=1*(-2)(x+1)^(-2-1)`
`=-2(x+1)^(-3) or -2/(x+1)^3`
`f^3(x)= d/(dx) [-2(x+1)^(-3)]`
`=(-2)*(-3)(x+1)^(-3-1)`
`=6(x+1)^(-4) or 6/(x+1)^4`
`f^4(x)= d/(dx) [6(x+1)^(-4)]`
`=6*(-4)(x+1)^(-4-1)`
`=-24(x+1)^(-5) or -24/(x+1)^5`
Plug-in `x=0` for each `f^n(x)` , we get:
`f(0)=0/(0+1) =0`
`f'(0)=1/(0+1)^2 = 1`
`f^2(0)=-2/(0+1)^3 = -2`
`f^3(0)=6/(0+1)^4 = 6`
`f^4(0)=-24/(0+1)^5 = -24`
Plug-in the values on the formula for Maclaurin series, we get:
`sum_(n=0)^4 (f^n(0))/(n!) x^n`
`= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4`
`= 0+1/(1!)x+(-2)/(2!)x^2+6/(3!)x^3+(-24)/(4!)x^4`
`= 0+1/1x-2/2x^2+6/6x^3-24/24x^4`
`= 0+x-x^2+x^3-x^4`
`=x-x^2+x^3-x^4`
The Maclaurin polynomial of degree `n=4` for the given function `f(x)=x/(x+1)` will be:
`P(x)=x-x^2+x^3-x^4`
No comments:
Post a Comment