Monday, 14 September 2015

`10^(3x-8)=2^(5-x)` Solve the equation.

To solve the equation: `10^(3x-8)=2^(5-x)` , we may take "ln" on both sides.


`ln(10^(3x-8))=ln(2^(5-x))`


Apply natural logarithm property: `ln(x^n) = n*ln(x)` .


`(3x-8)ln(10)=(5-x)ln(2)`


Let `10=2*5` .


`(3x-8)ln(2*5)=(5-x)ln(2)`


Apply natural logarithm property: `ln(x*y) = ln(x)+ln(y)` .


`(3x-8)(ln(2) +ln(5))=(5-x)ln(2)`


Distribute to expand each side.


`3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)`


Isolate all terms with x's on one side.


`3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)`


                                  `+8ln(2) +8ln(5)...

To solve the equation: `10^(3x-8)=2^(5-x)` , we may take "ln" on both sides.


`ln(10^(3x-8))=ln(2^(5-x))`


Apply natural logarithm property: `ln(x^n) = n*ln(x)` .


`(3x-8)ln(10)=(5-x)ln(2)`


Let `10=2*5` .


`(3x-8)ln(2*5)=(5-x)ln(2)`


Apply natural logarithm property: `ln(x*y) = ln(x)+ln(y)` .


`(3x-8)(ln(2) +ln(5))=(5-x)ln(2)`


Distribute to expand each side.


`3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)`


Isolate all terms with x's on one side.


`3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)`


                                  `+8ln(2) +8ln(5) `     `+8ln(2) `        ` +8ln(5)`  


------------------------------------------------------------------------------------------


`3xln(2)+3xln(5)+0 +0 =13ln(2)-xln(2) +8ln(5)`



`3xln(2)+3xln(5) =13ln(2)-xln(2) +8ln(5)`


`+xln(2) `                      ` +xln(2)`


--------------------------------------------------------------------------


`4xln(2) +3xln(5) =13ln(2)-0+8ln(5)`


`4xln(2) +3xln(5) =13ln(2)+8ln(5)`


Factor out common factor `x` on the left side.



`x(4ln(2) +3ln(5)) =13ln(2)+8ln(5)`


Divide both sides by `(4ln(2) +3ln(5))` .


`(x(4ln(2) +3ln(5)))/(4ln(2) +3ln(5)) =(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`


`x=(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`


Apply natural logarithm property: `n*ln(x)=ln(x^n)`


`x=(ln(2^(13))+ln(5^8))/(ln(2^4) +ln(5^3))`


`x=(ln(8192)+ln(390625))/(ln(16) +ln(125))`


Apply natural logarithm property: `ln(x)+ln(y)=ln(x*y)` .


`x=(ln(8192*390625))/(ln(16*125))`


`x=(ln(3200000000))/(ln(2000))`


or


`x~~2.879`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...