To solve the equation: `10^(3x-8)=2^(5-x)` , we may take "ln" on both sides.
`ln(10^(3x-8))=ln(2^(5-x))`
Apply natural logarithm property: `ln(x^n) = n*ln(x)` .
`(3x-8)ln(10)=(5-x)ln(2)`
Let `10=2*5` .
`(3x-8)ln(2*5)=(5-x)ln(2)`
Apply natural logarithm property: `ln(x*y) = ln(x)+ln(y)` .
`(3x-8)(ln(2) +ln(5))=(5-x)ln(2)`
Distribute to expand each side.
`3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)`
Isolate all terms with x's on one side.
`3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)`
`+8ln(2) +8ln(5)...
To solve the equation: `10^(3x-8)=2^(5-x)` , we may take "ln" on both sides.
`ln(10^(3x-8))=ln(2^(5-x))`
Apply natural logarithm property: `ln(x^n) = n*ln(x)` .
`(3x-8)ln(10)=(5-x)ln(2)`
Let `10=2*5` .
`(3x-8)ln(2*5)=(5-x)ln(2)`
Apply natural logarithm property: `ln(x*y) = ln(x)+ln(y)` .
`(3x-8)(ln(2) +ln(5))=(5-x)ln(2)`
Distribute to expand each side.
`3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)`
Isolate all terms with x's on one side.
`3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)`
`+8ln(2) +8ln(5) ` `+8ln(2) ` ` +8ln(5)`
------------------------------------------------------------------------------------------
`3xln(2)+3xln(5)+0 +0 =13ln(2)-xln(2) +8ln(5)`
`3xln(2)+3xln(5) =13ln(2)-xln(2) +8ln(5)`
`+xln(2) ` ` +xln(2)`
--------------------------------------------------------------------------
`4xln(2) +3xln(5) =13ln(2)-0+8ln(5)`
`4xln(2) +3xln(5) =13ln(2)+8ln(5)`
Factor out common factor `x` on the left side.
`x(4ln(2) +3ln(5)) =13ln(2)+8ln(5)`
Divide both sides by `(4ln(2) +3ln(5))` .
`(x(4ln(2) +3ln(5)))/(4ln(2) +3ln(5)) =(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`
`x=(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`
Apply natural logarithm property: `n*ln(x)=ln(x^n)`
`x=(ln(2^(13))+ln(5^8))/(ln(2^4) +ln(5^3))`
`x=(ln(8192)+ln(390625))/(ln(16) +ln(125))`
Apply natural logarithm property: `ln(x)+ln(y)=ln(x*y)` .
`x=(ln(8192*390625))/(ln(16*125))`
`x=(ln(3200000000))/(ln(2000))`
or
`x~~2.879`
No comments:
Post a Comment