Thursday, 28 August 2014

`sum_(n=2)^oo n/(nlnn)^n` Use the Root Test to determine the convergence or divergence of the series.

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


For the given series `sum_(n=2)^oo...

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


For the given series `sum_(n=2)^oo n/(nln(n))^n` , we have `a_n =n/(nln(n))^n` .


Applying the Root test, we set-up the limit as:


`lim_(n-gtoo) |n/(nln(n))^n|^(1/n) =lim_(n-gtoo) (n/(nln(n))^n)^(1/n)`


Apply Law of Exponent: `(x/y)^n = x^n/y^n` and `(x^n)^m = x^(n*m)` .


`lim_(n-gtoo) (n/(nln(n))^n)^(1/n) =lim_(n-gtoo) n^(1/n)/((nln(n))^n)^(1/n)`


                                `=lim_(n-gtoo) n^(1/n)/(nln(n))^(n*1/n)`


                                `=lim_(n-gtoo) n^(1/n)/(nln(n))^(n/n)`


                                `=lim_(n-gtoo) n^(1/n)/(nln(n))^1`


                                 `=lim_(n-gtoo) n^(1/n)/(nln(n))`


Apply the limit property: `lim_(x-gta)[(f(x))/(g(x))] =(lim_(x-gta) f(x))/(lim_(x-gta) g(x)).`


`lim_(n-gtoo) n^(1/n)/(nln(n))=(lim_(n-gtoo) n^(1/n))/(lim_(n-gtoo) nln(n))`


                      `=1/ oo`


                      `= 0 `                                                   


Note: `lim_(n-gtoo) n^(1/n) = 1 ` and 


         ` lim_(n-gtoo) nln(n) = oo ln(oo)`


                                ` = oo*oo`


                                ` =oo`


The limit value  `L=0` satisfies the condition: `L lt1` since `0lt1` .


Conclusion: The series `sum_(n=2)^oo n/(nln(n))^n` is absolutely convergent.

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...