Tuesday, 5 September 2017

`lim_(x->oo)x^2/sqrt(x^2+1)` Evaluate the limit, using L’Hôpital’s Rule if necessary.


Given


`lim_(x->oo)x^2/sqrt(x^2+1)`


as `x->oo` then we get `x^2/sqrt(x^2+1)=oo/oo`


since  it is of the form  `oo/oo` , we can use the L 'Hopital rule


so upon applying the L 'Hopital rule we get the solution as follows,


 For the given  general equation L 'Hopital rule is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now...


Given


`lim_(x->oo)x^2/sqrt(x^2+1)`


as `x->oo` then we get `x^2/sqrt(x^2+1)=oo/oo`


since  it is of the form  `oo/oo` , we can use the L 'Hopital rule


so upon applying the L 'Hopital rule we get the solution as follows,


 For the given  general equation L 'Hopital rule is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now evaluating


`lim_(x->oo)x^2/sqrt(x^2+1)`


=`lim_(x->oo)((x^2)')/((sqrt(x^2+1))')`


First let us solve `(sqrt(x^2+1))' `


=> `d/dx (sqrt(x^2+1)) `


let `u=x^2+1 `


so,


`d/dx (sqrt(x^2+1)) `


=`d/dx (sqrt(u))`


= `d/(du) sqrt(u) * d/dx (u) `        [as `d/dx f(u) = d/(du) f(u) (du)/dx` ]


=  `[(1/2)u^((1/2)-1) ]*(d/dx (x^2+1))`


=  `[(1/2)u^(-1/2)]*(2x)`


=`[1/(2sqrt(x^2 +1))]*(2x)`


=`x/sqrt(x^2+1)`


so now the below limit can be given as


=`lim_(x->oo)((x^2)')/((sqrt(x^2+1))')`


=`lim_(x->oo)((2x))/(x/sqrt(x^2+1))`


=`lim_(x->oo) (2sqrt(x^2+1))`


Now on substituting  the value of `x =oo` we get


=` (2sqrt((oo)^2+1))`


= `oo`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...