Friday, 1 September 2017

`int sec^6(4x)tan(4x) dx` Find the indefinite integral

Given to solve,


`int sec^6 (4x)tan(4x) dx`


let `u = 4x , du = 4dx`


so,


`int sec^6 (4x)tan(4x) dx`


=` int sec^6 (u)tan(u) (du)/4`


=` (1/4) int sec^6 (u)tan(u) du`


let `secu = v`


so, `dv = (sec u)(tan u) du`


so ,


`(1/4) int sec^6 (u)tan(u) du`


= `(1/4) int sec^5 (u) tan(u) *sec(u) du`


=`(1/4) int (v)^5 dv`


= `(1/4) v^6/6`


=` (v^6)/24`


= `((sec (u) )^6)/24`


=`((sec (4x) )^6)/24 +c`

Given to solve,


`int sec^6 (4x)tan(4x) dx`


let `u = 4x , du = 4dx`


so,


`int sec^6 (4x)tan(4x) dx`


=` int sec^6 (u)tan(u) (du)/4`


=` (1/4) int sec^6 (u)tan(u) du`


let `secu = v`


so, `dv = (sec u)(tan u) du`


so ,


`(1/4) int sec^6 (u)tan(u) du`


= `(1/4) int sec^5 (u) tan(u) *sec(u) du`


=`(1/4) int (v)^5 dv`


= `(1/4) v^6/6`


=` (v^6)/24`


= `((sec (u) )^6)/24`


=`((sec (4x) )^6)/24 +c`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...