Arc length of curve can be denoted as "`S` ". We can determine it by using integral formula on a closed interval [a,b] as: `S = int_a^b ds`
where:
`ds = sqrt(1+ ((dy)/(dx))^2 )dx` ` if y=f(x)`
or
`ds = sqrt(1+((dx)/(dy))^2) dy if x=h(y)`
`a` = lower boundary of the closed interval
`b` =upper boundary of the closed interval
From the given problem: `y =ln(x), [1,5]` , we determine that the boundary values are:
...
Arc length of curve can be denoted as "`S` ". We can determine it by using integral formula on a closed interval [a,b] as: `S = int_a^b ds`
where:
`ds = sqrt(1+ ((dy)/(dx))^2 )dx` ` if y=f(x)`
or
`ds = sqrt(1+((dx)/(dy))^2) dy if x=h(y)`
`a` = lower boundary of the closed interval
`b` =upper boundary of the closed interval
From the given problem: `y =ln(x), [1,5]` , we determine that the boundary values are:
`a= 1` and `b=5`
Note that `y= ln(x)` follows `y=f(x)` then the formula we will follow can be expressed as `S =int_a^bsqrt(1+ ((dy)/(dx))^2 )dx`
For the derivative of ` y` or `(dy)/(dx)` , we apply the derivative formula for logarithm:
`d/(dx)y= d/(dx) ln(x)`
`(dy)/(dx)= 1/x`
Then` ((dy)/(dx))^2= (1/x)^2` or `1/x^2` .
Plug-in the values on integral formula for arc length of a curve, we get:
`S =int_1^5sqrt(1+1/x^2 )dx`
Let `1 = x^2/x^2` then we get:
`S=int_1^5sqrt(x^2/x+1/x^2 )dx`
`=int_1^5sqrt((x^2+1)/x^2 )dx`
`=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx`
`=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx`
`=int_1^5sqrt(x^2+1)/xdx`
From the integration table, we follow the formula for rational function with roots:
`int sqrt(x^2+a^2)/x dx = sqrt(x^2+a^2)-a*ln|(a+sqrt(x^2+a^2))/x|` .
Applying the integral formula with a^2=1 then a=1, we get:
`int_1^5sqrt(x^2+1)/xdx = [sqrt(x^2+1)-1*ln|(1+sqrt(x^2+1))/x|]|_1^5`
`= [sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5`
Apply the definite integral formula: `F(x)|_a^b= F(b)-F(a)` .
`[sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5`
`=[sqrt(5^2+1)-ln|(1+sqrt(5^2+1))/5|]-[sqrt(1^2+1)-ln|(1+sqrt(1^2+1))/1|]`
`=[sqrt(25+1)-ln|(1+sqrt(25+1))/5|]-[sqrt(1+1)-ln|(1+sqrt(1+1))/1|]`
`=[sqrt(26)-ln|(1+sqrt(26))/5|]-[sqrt(2)-ln|1+sqrt(2)|]`
`=sqrt(26)-ln|(1+sqrt(26))/5| -sqrt(2)+ln|1+sqrt(2)|`
Apply logarithm property: `ln(x)-ln(y) = ln(x/y)` .
`S =sqrt(26)-sqrt(2)+ln|1+sqrt(2)|-ln|(1+sqrt(26))/5|`
`S =sqrt(26)-sqrt(2)+ln|(1+sqrt(2))/(((1+sqrt(26))/5))|`
`S =sqrt(26)-sqrt(2)+ln|(5*(1+sqrt(2)))/(1+sqrt(26))|`
`S =sqrt(26)-sqrt(2)+ln|(5+5sqrt(2))/(1+sqrt(26))|`
`S~~4.37`
No comments:
Post a Comment