Friday, 21 October 2016

`sum_(n=0)^oo (-1)^n/((2n+1)!)` Determine the convergence or divergence of the series.

To determine the convergence or divergence of the series `sum_(n=0)^oo (-1)^n/((2n+1)!)` , we may apply ratio test.


In Ratio test, we determine the limit as:


`lim_(n-gtoo)|a_(n+1)/a_n| = L`


or


`lim_(n-gtoo)|a_(n+1)*1/a_n| = L`


 Then ,we follow the conditions:


a) `L lt1` then the series converges absolutely.


b) `Lgt1` then the series diverges.


c)` L=1` or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.


For...

To determine the convergence or divergence of the series `sum_(n=0)^oo (-1)^n/((2n+1)!)` , we may apply ratio test.


In Ratio test, we determine the limit as:


`lim_(n-gtoo)|a_(n+1)/a_n| = L`


or


`lim_(n-gtoo)|a_(n+1)*1/a_n| = L`


 Then ,we follow the conditions:


a) `L lt1` then the series converges absolutely.


b) `Lgt1` then the series diverges.


c)` L=1` or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.


For the series `sum_(n=0)^oo (-1)^n/((2n+1)!)` , we have:


`a_n=(-1)^n/((2n+1)!)`


Then,


`1/a_n=((2n+1)!)/(-1)^n`


`a_(n+1)=(-1)^(n+1)/((2(n+1)+1)!)`


            `=(-1)^(n+1)/((2n+2+1)!)`


            `=(-1)^(n+1)/((2n+3)!)`


            `=((-1)^n*(-1))/((2n+3)(2n+2)((2n+1)!))`


Applying the Ratio test on the power series, we set-up the limit as:


`lim_(n-gtoo) |((-1)^n*(-1))/((2n+3)(2n+2)((2n+1)!)) *((2n+1)!)/(-1)^n|`


Cancel out common factors: `(-1)^n` and `(2n+1)!` .


`lim_(n-gtoo) |(-1)/((2n+3)(2n+2))|`


Evaluate the limit.


`lim_(n-gtoo) |(-1)/((2n+3)(2n+2))| =|-1| lim_(n-gtoo) |1/((2n+3)(2n+2))|`


                                         `=1* 1/oo`


                                         `=1*0`


                                         `=0`


The `L=0` satisfies ratio test condition: `Llt1`  since `0lt1` .


Thus, the series `sum_(n=0)^oo (-1)^n/((2n+1)!)` is absolutely convergent.

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...