To evaluate the given equation `1/3log_5(12x)=2` , we may apply logarithm property: `n* log_b(x) = log_b(x^n)` .
`log_5((12x)^(1/3))=2`
Take the "log" on both sides to be able to apply the logarithm property: `a^(log_a(x))=x` .
`5^(log_5((12x)^(1/3)))=5^(2)`
`(12x)^(1/3)= 25`
Cubed both sides to cancel out the fractional exponent.
`((12x)^(1/3))^3= (25)^3`
`(12x)^(1/3*3)=15625`
`(12x)^(3/3)=15625`
`12x =15625`
Divide both sides by `12` .
`(12x)/12 =(15625)/12`
`x =(15625)/12`
Checking: Plug-in `x=(15625)/12` on `1/3log_5(12x)=2`
`1/3log_5(12*(15625)/12)=?2`
`1/3log_5(15625)=?2`
`log_5(15625^(1/3))=?2`
`log_5(root(3)(15625))=?2`
`log_5(25)=?2`
`log_5(5^2)=?2`
`2log_5(5)=?2`
`2*1=?2`
`2=2...
To evaluate the given equation `1/3log_5(12x)=2` , we may apply logarithm property: `n* log_b(x) = log_b(x^n)` .
`log_5((12x)^(1/3))=2`
Take the "log" on both sides to be able to apply the logarithm property: `a^(log_a(x))=x` .
`5^(log_5((12x)^(1/3)))=5^(2)`
`(12x)^(1/3)= 25`
Cubed both sides to cancel out the fractional exponent.
`((12x)^(1/3))^3= (25)^3`
`(12x)^(1/3*3)=15625`
`(12x)^(3/3)=15625`
`12x =15625`
Divide both sides by `12` .
`(12x)/12 =(15625)/12`
`x =(15625)/12`
Checking: Plug-in `x=(15625)/12` on `1/3log_5(12x)=2`
`1/3log_5(12*(15625)/12)=?2`
`1/3log_5(15625)=?2`
`log_5(15625^(1/3))=?2`
`log_5(root(3)(15625))=?2`
`log_5(25)=?2`
`log_5(5^2)=?2`
`2log_5(5)=?2`
`2*1=?2`
`2=2 ` TRUE
There is no extraneous solution. The `x=(15625)/12` is a real solution for the given equation `1/3log_5(12x)=2` .
No comments:
Post a Comment