Saturday, 3 September 2016

Find the indefinite integral

Indefinite integrals are written in the form of

 where: as the integrand


            as the anti-derivative function 


             as the arbitrary constant known as constant of integration


For the given problem  has an integrand in the form of a trigonometric function. To evaluate this, we apply the identity:



The integral becomes:



 Apply the basic properties of integration: .



 Apply the basic integration property: .



Then apply u-substitution to be able to apply integration formula for cosine function: .


For the integral:   d theta, we let then or .



                                   


                                   


                                   


Plug-in on , we get:



 For the integral:  , we let then .



                             


                              


Plug-in on  , we get:



Combining the results, we get the indefinite integral as:



or  

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...