Maclaurin series is a special case of Taylor series that is centered at `c=0.` The expansion of the function about `0` follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin series for the given function` f(x)=sinh(x)` , we may apply the formula for Maclaurin series.
For the list of `f^n(x)` , we may apply the derivative formula for hyperbolic trigonometric functions: `d/(dx) sinh(x) = cosh(x)` and `d/(dx) cosh(x) = sinh(x)` .
`f(x) =sinh(x)`
`f'(x) = d/(dx) sinh(x)= cosh(x)`
`f^2(x) = d/(dx) cosh(x)= sinh(x)`
`f^3(x) = d/(dx) sinh(x)=cosh(x)`
`f^4(x) = d/(dx) cosh(x)= sinh(x)`
`f^5(x) = d/(dx) sinh(x)= cosh(x)`
Plug-in `x=0` on each `f^n(x)` , we get:
`f(0) =sinh(0)=0`
`f'(0) = cosh(0)=1`
`f^2(0) = sinh(0)=0`
`f^3(0) = cosh(0)=1`
`f^4(0) = sinh(0)=0`
`f^5(0) = cosh(0)=1`
Plug-in the values on the formula for Maclaurin series, we get:
`sum_(n=0)^oo (f^n(0))/(n!) x^n`
`= 0+1/(1!)x+0/(2!)x^2+1/(3!)x^3+0/(4!)x^4+1/(5!)x^5+...`
`= 1/(1!)x+1/(3!)x^3+1/(5!)x^5+...`
`=sum_(n=0)^oo x^(2n+1)/((2n+1)!)`
The Maclaurin series is `sum_(n=0)^oo x^(2n+1)/((2n+1)!)` for the function `f(x)=sinh(x)` .
To determine the interval of convergence for the Maclaurin series: `sum_(n=0)^oo x^(2n+1)/((2n+1)!)` , we may apply Ratio Test.
In Ratio test, we determine the limit as: `lim_(n-gtoo)|a_(n+1)/a_n| = L` .
The series converges absolutely when it satisfies `Llt1` .
In the Maclaurin series: `sum_(n=0)^oo x^(2n+1)/((2n+1)!)` , we have:
`a_n=x^(2n+1)/((2n+1)!)`
Then,
`1/a_n=((2n+1)!)/x^(2n+1)`
`a_(n+1)=x^(2(n+1)+1)/((2(n+1)+1)!)`
`=x^(2n+2+1)/((2n+2+1)!)`
`=x^((2n+1)+2)/((2n+3)!)`
`=(x^(2n+1)*x^2)/((2n+3)(2n+2)((2n+1)!))`
Applying the Ratio test, we set-up the limit as:
`lim_(n-gtoo)|a_(n+1)/a_n|=lim_(n-gtoo)|a_(n+1)*1/a_n|`
`=lim_(n-gtoo)|(x^(2n+1)*x^2)/((2n+3)(2n+2)((2n+1)!))*((2n+1)!)/x^(2n+1)|`
Cancel out common factors: `x^(2n+1) and ((2n+1)!)` .
`lim_(n-gtoo)|x^2/((2n+3)(2n+2))|`
Evaluate the limit.
`lim_(n-gtoo)|x^2/((2n+3)(2n+2))| = |x^2|lim_(n-gtoo)|1/((2n+3)(2n+2))|`
`=|x^2|*1/oo`
`= |x^2|*0`
`=0`
The `L=0` satisfies` Llt1` for all `x` .
Thus, the Maclaurin series: `sum_(n=0)^oo x^(2n+1)/((2n+1)!)` is absolutely converges for all `x` .
Interval of convergence: `-ooltxltoo` .
No comments:
Post a Comment