Wednesday, 28 September 2016

Prove that the Maclaurin series for the function converges to the function for all x

Maclaurin series is a special case of Taylor series that is centered at . The expansion of the function about 0 follows the formula:


 or



To determine the Maclaurin polynomial of degree n=5 for the given function , we may apply the formula for Maclaurin series..


To list derivative functions  , we may apply derivative formula for exponential function: .



Let then



                 


Applying   for each derivative function, we get:



       



            


            


            



           


           


            


 


            


            


            


 Plug-in for each , we get:


 


 


 


 


 


Note:


 Plug-in the values on the formula for Maclaurin series, we get:


 


 


 


 


 


To determine the interval of convergence for the Maclaurin series: , we may apply Ratio Test.  


In Ratio test, we determine the limit as: 


The series converges absolutely when it satisfies .


For the  Maclaurin series:  , we have:



Then,




           


             


Applying the Ratio test, we set-up the limit as:



                         


Cancel out common factors:  and .



Evaluate the limit.



                       


                       


                       


                       


The satisfies  for all .


Thus, the Maclaurin series:  is absolutely converges for all .


Interval of convergence:

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...