Given` (x-1)y'+y=x^2-1`
when the first order linear ordinary differential equation has the form of
`y'+p(x)y=q(x)`
then the general solution is,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
so,
`(x-1)y'+y=x^2-1`
=> `(x-1)[y' + y/(x-1)] = x^2 -1`
=> `y'+y/(x-1)= ((x+1)(x-1))/(x-1)`
=> `y'+y/(x-1)= (x+1)` --------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = 1/(x-1) and q(x)=(x+1)`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x)...
Given` (x-1)y'+y=x^2-1`
when the first order linear ordinary differential equation has the form of
`y'+p(x)y=q(x)`
then the general solution is,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
so,
`(x-1)y'+y=x^2-1`
=> `(x-1)[y' + y/(x-1)] = x^2 -1`
=> `y'+y/(x-1)= ((x+1)(x-1))/(x-1)`
=> `y'+y/(x-1)= (x+1)` --------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = 1/(x-1) and q(x)=(x+1)`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
=`((int e^(int (1/(x-1))dx) *(x+1)) dx +c)/e^(int(1/(x-1)) dx)`
first we shall solve
`e^(int (1/(x-1)) dx)=e^(ln|x-1|) = |x-1|`
When `x-1<=0 ` then `ln(x-1)` is undefined , so
`e^(int(1/(x-1)) dx)=x-1`
so
proceeding further, we get
y(x) =`((int e^(int (1/(x-1))dx) *(x+1)) dx +c)/e^(int(1/(x-1)) dx)`
=`((int (x-1)*(x+1)) dx +c)/(x-1)`
=`((int (x^2-1) ) dx +c)/(x-1)`
= `(x^3/3 -x +c)/(x-1)`
` y(x)=(x^3/3 -x +c)/(x-1)`
No comments:
Post a Comment