Maclaurin series is a special case of Taylor series that is centered at `c=0` . The expansion of the function about 0 follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin polynomial of degree `n=4` for the given function `f(x)=cos(pix)` , we may apply the formula for Maclaurin series.
To list `f^n(x)` up to `n=4` , we may apply the derivative formula for trigonometric functions: `d/(dx) sin(u) = cos(u) *(du)/(dx)` and `d/(dx) cos(u) = -sin(u) *(du)/(dx)` .
Let `u =pix` then `(du)/(dx) =pi` .
`f(x) =cos(pix)`
`f'(x) = d/(dx) cos(pix)`
`= -sin(pix) *pi`
`=-pisin(pix)`
`f^2(x) = d/(dx)-pisin(pix)`
`=-pi*d/(dx) sin(pix)`
`= -pi * (cos(pi)* pi)`
`= -pi^2cos(pix)`
`f^3(x) = d/(dx)-pi^2cos(pix)`
`=-pi^2*d/(dx) cos(pix)`
`= -pi^2 * (-sin(pix)*pi)`
`= pi^3sin(pix)`
`f^4(x) = d/(dx)pi^3sin(pix)`
`= pi^3d/(dx) sin(pix)`
`= pi^3(cos(pix) *pi) `
`=pi^4cos(pix)`
Plug-in` x=0` on each `f^n(x)` , we get:
`f(0)= cos(pi*0) =1`
`f'(0)= -pisin(pi*0) =0`
`f^2(0)= -pi^2cos(pi*0)=-pi^2`
`f^3(0)= pi^3sin(pi*0)=0`
`f^4(0) =pi^4cos(pi*0) =pi^4`
Note: `cos(pi*0) = cos(0)=1` and `sin(pi*0)=sin(0)=0` .
Plug-in the values on the formula for Maclaurin series, we get:
`sum_(n=0)^4 (f^n(0))/(n!)x^n`
` =f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4`
` =1+0/(1!)x+(-pi^2)/(2!)x^2+0/(3!)x^3+(pi^4)/(4!)x^4`
`=1+0/1x-pi^2/2x^2+0/6x^3+pi^4/24x^4`
`=1-pi^2/2x^2+pi^4/24x^4`
The Maclaurin polynomial of degree `n=4` for the given function `f(x)=cos(pix)` will be:
`P(x)=1-pi^2/2x^2+pi^4/24x^4`
No comments:
Post a Comment