Tuesday 9 September 2014

`x = 1/3sqrt(y)(y-3) , 1

Arc length (L) of the function x=h(y) on the interval [c,d] is given by the formula,


`L=int_c^dsqrt(1+(dx/dy)^2)dy`  , if x=h(y) and c `<=`  y `<=`  d,


Now let's differentiate the function with respect to y,


`x=1/3sqrt(y)(y-3)`


`dx/dy=1/3{sqrt(y)d/dy(y-3)+(y-3)d/dysqrt(y)}`


`dx/dy=1/3{sqrt(y)(1)+(y-3)1/2(y)^(1/2-1)}`


`dx/dy=1/3{sqrt(y)+(y-3)/(2sqrt(y))}`


`dx/dy=1/3{(2y+y-3)/(2sqrt(y))}`


`dx/dy=1/3{(3y-3)/(2sqrt(y))}`


`dx/dy=1/3(3)(y-1)/(2sqrt(y))`


`dx/dy=(y-1)/(2sqrt(y))`


Plug in the above derivative in the arc length formula,


`L=int_1^4sqrt(1+((y-1)/(2sqrt(y)))^2)dy`


`L=int_1^4sqrt(1+(y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((4y+y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((y^2+2y+1)/(4y))dy`


`L=int_1^4(1/2)sqrt((y+1)^2/y)dy`


`L=1/2int_1^4(y+1)/sqrt(y)dy`


Now let's compute first the indefinite integral by applying integral substitution,


Let `u=sqrt(y)`


`(du)/dy=1/2(y)^(1/2-1)`  


`(du)/dy=1/(2sqrt(y))`


`int(y+1)/sqrt(y)dy=int(u^2+1)2du`


...

Arc length (L) of the function x=h(y) on the interval [c,d] is given by the formula,


`L=int_c^dsqrt(1+(dx/dy)^2)dy`  , if x=h(y) and c `<=`  y `<=`  d,


Now let's differentiate the function with respect to y,


`x=1/3sqrt(y)(y-3)`


`dx/dy=1/3{sqrt(y)d/dy(y-3)+(y-3)d/dysqrt(y)}`


`dx/dy=1/3{sqrt(y)(1)+(y-3)1/2(y)^(1/2-1)}`


`dx/dy=1/3{sqrt(y)+(y-3)/(2sqrt(y))}`


`dx/dy=1/3{(2y+y-3)/(2sqrt(y))}`


`dx/dy=1/3{(3y-3)/(2sqrt(y))}`


`dx/dy=1/3(3)(y-1)/(2sqrt(y))`


`dx/dy=(y-1)/(2sqrt(y))`


Plug in the above derivative in the arc length formula,


`L=int_1^4sqrt(1+((y-1)/(2sqrt(y)))^2)dy`


`L=int_1^4sqrt(1+(y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((4y+y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((y^2+2y+1)/(4y))dy`


`L=int_1^4(1/2)sqrt((y+1)^2/y)dy`


`L=1/2int_1^4(y+1)/sqrt(y)dy`


Now let's compute first the indefinite integral by applying integral substitution,


Let `u=sqrt(y)`


`(du)/dy=1/2(y)^(1/2-1)`  


`(du)/dy=1/(2sqrt(y))`


`int(y+1)/sqrt(y)dy=int(u^2+1)2du`


`=2int(u^2+1)du`


`=2(u^3/3+u)` 


substitute back u= `sqrt(y)`  and add a constant C to the solution,


`=2(y^(3/2)/3+sqrt(y))+C`


`L=[1/2{2(y^(3/2)/3+sqrt(y)}]_1^4`


`L=[y^(3/2)/3+sqrt(y)]_1^4`


`L=[4^(3/2)/3+sqrt(4)]-[1^(3/2)/3+sqrt(1)]`


`L=[8/3+2]-[1/3+1]`


`L=[(8+6)/3]-[(1+3)/3]`


`L=[14/3]-[4/3]`


`L=10/3`


Arc length of the function over the given interval is `10/3`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic&#39;s Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...