Sunday 21 September 2014

Find the arc length from (0,3) clockwise to `(2,sqrt(5))` along the circle `x^2+y^2 = 9`

Use the arc length formula,


`L=intds`


`ds=sqrt(1+(dy/dx)^2)dx` , if y=f(x), a`<=` x`<=` b


Given `x^2+y^2=9`


`=>y^2=9-x^2`


`y=(9-x^2)^(1/2)`


`dy/dx=1/2(9-x^2)^(1/2-1)*(-2x)`


`=-x/sqrt(9-x^2)`


Plug in the above in ds,


`ds=sqrt(1+(-x/sqrt(9-x^2)))^2dx`


`ds=sqrt(1+x^2/(9-x^2))dx`


`ds=sqrt((9-x^2+x^2)/(9-x^2))dx`


`ds=3/sqrt(9-x^2)dx`


The limits are x=0 and x=2,


`L=int_0^2 3/sqrt(9-x^2)dx`


`=3int_0^2 1/sqrt(9-x^2)dx`


Now let's first evaluate the indefinite integral by using integral substitution,


Let `x=3sin(u)`


`dx=3cos(u)du`


`int1/sqrt(9-x^2)dx=int1/sqrt(9-(3sin(u))^2)3cos(u)du`


`=int(3cos(u))/sqrt(9-9sin^2(u))du`


`=int(3cos(u))/(sqrt(9)sqrt(1-sin^2(u)))du`


`=int(3cos(u))/(3cos(u))du`


`=int1du`


`=u`


substitute back u and add a constant C to the solution,


`=arcsin(x/3)+C`


`L=3[arcsin(x/3)]_0^2`


`L=3[arcsin(2/3)-arcsin(0)]`


`L=3arcsin(2/3)`


`~~2.19`

Use the arc length formula,


`L=intds`


`ds=sqrt(1+(dy/dx)^2)dx` , if y=f(x), a`<=` x`<=` b


Given `x^2+y^2=9`


`=>y^2=9-x^2`


`y=(9-x^2)^(1/2)`


`dy/dx=1/2(9-x^2)^(1/2-1)*(-2x)`


`=-x/sqrt(9-x^2)`


Plug in the above in ds,


`ds=sqrt(1+(-x/sqrt(9-x^2)))^2dx`


`ds=sqrt(1+x^2/(9-x^2))dx`


`ds=sqrt((9-x^2+x^2)/(9-x^2))dx`


`ds=3/sqrt(9-x^2)dx`


The limits are x=0 and x=2,


`L=int_0^2 3/sqrt(9-x^2)dx`


`=3int_0^2 1/sqrt(9-x^2)dx`


Now let's first evaluate the indefinite integral by using integral substitution,


Let `x=3sin(u)`


`dx=3cos(u)du`


`int1/sqrt(9-x^2)dx=int1/sqrt(9-(3sin(u))^2)3cos(u)du`


`=int(3cos(u))/sqrt(9-9sin^2(u))du`


`=int(3cos(u))/(sqrt(9)sqrt(1-sin^2(u)))du`


`=int(3cos(u))/(3cos(u))du`


`=int1du`


`=u`


substitute back u and add a constant C to the solution,


`=arcsin(x/3)+C`


`L=3[arcsin(x/3)]_0^2`


`L=3[arcsin(2/3)-arcsin(0)]`


`L=3arcsin(2/3)`


`~~2.19`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic&#39;s Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...