Use the arc length formula,
`L=intds`
`ds=sqrt(1+(dy/dx)^2)dx` , if y=f(x), a`<=` x`<=` b
Given `x^2+y^2=9`
`=>y^2=9-x^2`
`y=(9-x^2)^(1/2)`
`dy/dx=1/2(9-x^2)^(1/2-1)*(-2x)`
`=-x/sqrt(9-x^2)`
Plug in the above in ds,
`ds=sqrt(1+(-x/sqrt(9-x^2)))^2dx`
`ds=sqrt(1+x^2/(9-x^2))dx`
`ds=sqrt((9-x^2+x^2)/(9-x^2))dx`
`ds=3/sqrt(9-x^2)dx`
The limits are x=0 and x=2,
`L=int_0^2 3/sqrt(9-x^2)dx`
`=3int_0^2 1/sqrt(9-x^2)dx`
Now let's first evaluate the indefinite integral by using integral substitution,
Let `x=3sin(u)`
`dx=3cos(u)du`
`int1/sqrt(9-x^2)dx=int1/sqrt(9-(3sin(u))^2)3cos(u)du`
`=int(3cos(u))/sqrt(9-9sin^2(u))du`
`=int(3cos(u))/(sqrt(9)sqrt(1-sin^2(u)))du`
`=int(3cos(u))/(3cos(u))du`
`=int1du`
`=u`
substitute back u and add a constant C to the solution,
`=arcsin(x/3)+C`
`L=3[arcsin(x/3)]_0^2`
`L=3[arcsin(2/3)-arcsin(0)]`
`L=3arcsin(2/3)`
`~~2.19`
Use the arc length formula,
`L=intds`
`ds=sqrt(1+(dy/dx)^2)dx` , if y=f(x), a`<=` x`<=` b
Given `x^2+y^2=9`
`=>y^2=9-x^2`
`y=(9-x^2)^(1/2)`
`dy/dx=1/2(9-x^2)^(1/2-1)*(-2x)`
`=-x/sqrt(9-x^2)`
Plug in the above in ds,
`ds=sqrt(1+(-x/sqrt(9-x^2)))^2dx`
`ds=sqrt(1+x^2/(9-x^2))dx`
`ds=sqrt((9-x^2+x^2)/(9-x^2))dx`
`ds=3/sqrt(9-x^2)dx`
The limits are x=0 and x=2,
`L=int_0^2 3/sqrt(9-x^2)dx`
`=3int_0^2 1/sqrt(9-x^2)dx`
Now let's first evaluate the indefinite integral by using integral substitution,
Let `x=3sin(u)`
`dx=3cos(u)du`
`int1/sqrt(9-x^2)dx=int1/sqrt(9-(3sin(u))^2)3cos(u)du`
`=int(3cos(u))/sqrt(9-9sin^2(u))du`
`=int(3cos(u))/(sqrt(9)sqrt(1-sin^2(u)))du`
`=int(3cos(u))/(3cos(u))du`
`=int1du`
`=u`
substitute back u and add a constant C to the solution,
`=arcsin(x/3)+C`
`L=3[arcsin(x/3)]_0^2`
`L=3[arcsin(2/3)-arcsin(0)]`
`L=3arcsin(2/3)`
`~~2.19`
No comments:
Post a Comment