The formula of arc length of a parametric equation on the interval `alt=tlt=b` is:
`L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt`
The given parametric equation is:
`x=6t^2`
`y=2t^3`
The derivative of x and y are:
`dx/dt= 12t`
`dy/dt = 6t^2`
So the integral needed to compute the arc length of the given parametric equation on the interval `1lt=tlt=4` is:
`L= int_1^4 sqrt ((12t)^2+(6t^2)^2) dt`
The simplified form of the integral is:
`L= int_1^4 sqrt (144t^2+36t^4)dt`
`L=int_1^4 sqrt...
The formula of arc length of a parametric equation on the interval `alt=tlt=b` is:
`L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt`
The given parametric equation is:
`x=6t^2`
`y=2t^3`
The derivative of x and y are:
`dx/dt= 12t`
`dy/dt = 6t^2`
So the integral needed to compute the arc length of the given parametric equation on the interval `1lt=tlt=4` is:
`L= int_1^4 sqrt ((12t)^2+(6t^2)^2) dt`
The simplified form of the integral is:
`L= int_1^4 sqrt (144t^2+36t^4)dt`
`L=int_1^4 sqrt (36t^2(4+t^2))dt`
`L= int_1^4 6tsqrt(4+t^2)dt`
To take the integral, apply u-substitution method.
`u= 4+t^2`
`du=2t dt`
`1/2du=tdt`
`t=1` , `u =4+1^2=5`
`t=4` , `u = 4+4^2=20`
Expressing the integral in terms of u, it becomes:
`L=6int_1^4 sqrt(4+t^2)* tdt`
`L=6 int _5^20 sqrtu *1/2du`
`L=3int_5^20 sqrtu du`
`L=3int_5^20 u^(1/2)du`
`L=3*u^(3/2)/(3/2)` `|_5^20`
`L=2u^(3/2)` `|_5^20`
`L = 2usqrtu` `|_5^20`
`L=2(20)sqrt20 - 2(5)sqrt5`
`L=40sqrt20-10sqrt5`
`L=40*2sqrt5 - 10sqrt5`
`L=80sqrt5-10sqrt5`
`L=70sqrt5`
Therefore, the arc length of the curve is `70sqrt5` units.
No comments:
Post a Comment