Given to solve,
`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)`
Removing the negative form the denominator we get
= `- lim_(x->5^(+)) sqrt(25-x^2)/(5-x)`
= `- lim_(x->5^(+)) sqrt(5^2-x^2)/(5-x)`
= `- lim_(x->5^(+)) sqrt((5-x)(5+x))/(5-x)`
= `- lim_(x->5^(+)) sqrt((5+x)/(5-x))`
=`- [(lim_(x->5^(+)) sqrt((5+x))]/ [lim_(x->5^(+)) sqrt(5-x))]`
= `- sqrt(5+lim_(x->5^(+)) x) /sqrt(5-lim_(x->5^(+)) x)`
as `x-> 5^(+)` ,then the denominator tends from 0 to `-1` .
so,
`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)=oo`
Given to solve,
`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)`
Removing the negative form the denominator we get
= `- lim_(x->5^(+)) sqrt(25-x^2)/(5-x)`
= `- lim_(x->5^(+)) sqrt(5^2-x^2)/(5-x)`
= `- lim_(x->5^(+)) sqrt((5-x)(5+x))/(5-x)`
= `- lim_(x->5^(+)) sqrt((5+x)/(5-x))`
=`- [(lim_(x->5^(+)) sqrt((5+x))]/ [lim_(x->5^(+)) sqrt(5-x))]`
= `- sqrt(5+lim_(x->5^(+)) x) /sqrt(5-lim_(x->5^(+)) x)`
as `x-> 5^(+)` ,then the denominator tends from 0 to `-1` .
so,
`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)=oo`
No comments:
Post a Comment