Saturday, 17 May 2014

`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)` Evaluate the limit, using L’Hôpital’s Rule if necessary.

Given to solve,


`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)`



Removing the negative form the denominator we get



= `- lim_(x->5^(+)) sqrt(25-x^2)/(5-x)`


= `- lim_(x->5^(+)) sqrt(5^2-x^2)/(5-x)`


= `- lim_(x->5^(+)) sqrt((5-x)(5+x))/(5-x)`


= `- lim_(x->5^(+)) sqrt((5+x)/(5-x))`


=`- [(lim_(x->5^(+)) sqrt((5+x))]/ [lim_(x->5^(+)) sqrt(5-x))]`


= `- sqrt(5+lim_(x->5^(+)) x) /sqrt(5-lim_(x->5^(+)) x)`


as `x->  5^(+)` ,then the denominator tends from 0 to `-1` .


so,


`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)=oo`

Given to solve,


`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)`



Removing the negative form the denominator we get



= `- lim_(x->5^(+)) sqrt(25-x^2)/(5-x)`


= `- lim_(x->5^(+)) sqrt(5^2-x^2)/(5-x)`


= `- lim_(x->5^(+)) sqrt((5-x)(5+x))/(5-x)`


= `- lim_(x->5^(+)) sqrt((5+x)/(5-x))`


=`- [(lim_(x->5^(+)) sqrt((5+x))]/ [lim_(x->5^(+)) sqrt(5-x))]`


= `- sqrt(5+lim_(x->5^(+)) x) /sqrt(5-lim_(x->5^(+)) x)`


as `x->  5^(+)` ,then the denominator tends from 0 to `-1` .


so,


`lim_(x->5^(+)) sqrt(25-x^2)/(x-5)=oo`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...