Wednesday, 14 May 2014

Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of about a single point. It is represented by infinite sum of  centered at  . The general formula for Taylor series is:


or



To apply the definition of Taylor series for the given function centered at c=2, we list using the  Power rule for differentiation:   and basic differentiation property: .



Let then .


The derivative of f(x) will be:



                  


                  


Then, we list the derivatives of as:



           



           


           



           


           


           



           


            


            


Plug-in , we get:



        


        



          


         


         



          


         


        



          


          


         



           


         


         


Plug-in the values on the formula for Taylor series, we get:







The Taylor series for the given function centered at will be:



or 


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...