Tuesday, 21 January 2014

`int (x^2+12x+12)/(x^3-4x) dx` Use partial fractions to find the indefinite integral


`int (x^2+12x+12)/(x^3-4x)dx `


To solve using partial fraction method, the denominator of the integrand should be factored.


`(x^2+12x+12)/(x^3-4x) =(x^2+12x+12)/(x(x-2)(x+2))`


Then, express it as sum of fractions.


`(x^2+12x+12)/(x(x-2)(x+2)) = A/x + B/(x-2) + C/(x+2)`


To determine the values of A, B and C, multiply both sides by the LCD of the fractions present.


`x(x-2)(x+2)*(x^2+12x+12)/(x(x-2)(x+2)) = (A/x + B/(x-2) + C/(x+2))*x(x-2)(x+2)`


`x^2+12x+12=A(x-2)(x+2) +Bx(x+2)+Cx(x-2)`


Then, assign values to x in which either x, x-2 or x+2 will...


`int (x^2+12x+12)/(x^3-4x)dx `


To solve using partial fraction method, the denominator of the integrand should be factored.


`(x^2+12x+12)/(x^3-4x) =(x^2+12x+12)/(x(x-2)(x+2))`


Then, express it as sum of fractions.


`(x^2+12x+12)/(x(x-2)(x+2)) = A/x + B/(x-2) + C/(x+2)`


To determine the values of A, B and C, multiply both sides by the LCD of the fractions present.


`x(x-2)(x+2)*(x^2+12x+12)/(x(x-2)(x+2)) = (A/x + B/(x-2) + C/(x+2))*x(x-2)(x+2)`


`x^2+12x+12=A(x-2)(x+2) +Bx(x+2)+Cx(x-2)`


Then, assign values to x in which either x, x-2 or x+2 will become zero.


So, plug-in x=0 to get the value of A.


`0^2+12(0)+12=A(0-2)(0+2)+B(0)(0+2)+C(0)(0-2)`


`0+0+12=A(-4)+B(0)+C(0)`


`12=-4A`


`-3=A`


Also, plug-in x=2 to get the value of B.


`2^2+12(2)+12=A(2-2)(2+2)+B(2)(2+2)+C(2)(2-2)`


`4+24+12=A(0)+B(8)+C(0)`


`40=8B`


`5=B`


And subsitute x=-2 to get the value of C.


`(-2)^2 + 12(-2)+12=A(-2-2)(-2+2)+B(-2)(-2+2)+C(-2)(-2-2)`


`4-24+12=A(0)+B(0)+C(8)`


`-8=8C`


`-1=C`


So the partial fraction decomposition of the integral is


`int (x^2+12x+12)/(x^3-4x)dx`


`= int (x^2+12x+12)/(x(x-2)(x+2))dx`


`= int(-3/x +5/(x-2)-1/(x+2))dx`


Then, express it as three integrals.


`= int-3/xdx + int 5/(x-2)dx - int 1/(x+2)dx`


`= -3int 1/xdx + 5int 1/(x-2)dx - int 1/(x+2)dx`


To take the integral, apply the formula `int 1/u du =ln|u|+C` .


`=-3ln|x| + 5ln|x-2|-ln|x+2|+C`



Therefore,`int (x^2+12x+12)/(x^3-4x)dx=-3ln|x| + 5ln|x-2|-ln|x+2|+C`.

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...