Saturday, 11 January 2014

`10^(3x-10)=(1/100)^(6x-1)` Solve the equation.

To evaluate the given equation `10^(3x-10)=(1/100)^(6x-1)` , we may apply `100=10^2` . The equation becomes:


`10^(3x-10)=(1/10^2)^(6x-1)`


Apply Law of Exponents: `1/x^n = x^(-n)` .


`10^(3x-10)=(10^(-2))^(6x-1)`


Note:` 1/100= 10^(-2)`


Apply Law of Exponents: `(x^n)^m = x^(n*m)` .


`10^(3x-10)=10^((-2)*(6x-1))`


`10^(3x-10)=10^(-12x+2)`


Apply the theorem: If `b^x=b^y` then `x=y` , we get:


`3x-10=-12x+2`


Add `12x` on both sides of the equation.


`3x-10+12x=-12x+2+12x`


`15x-10=2`


Add `10` on both sides of the equation.


`15x-10+10=2+10`


`15x=12`


Divide both sides by `15` .


...

To evaluate the given equation `10^(3x-10)=(1/100)^(6x-1)` , we may apply `100=10^2` . The equation becomes:


`10^(3x-10)=(1/10^2)^(6x-1)`


Apply Law of Exponents: `1/x^n = x^(-n)` .


`10^(3x-10)=(10^(-2))^(6x-1)`


Note:` 1/100= 10^(-2)`


Apply Law of Exponents: `(x^n)^m = x^(n*m)` .


`10^(3x-10)=10^((-2)*(6x-1))`


`10^(3x-10)=10^(-12x+2)`


Apply the theorem: If `b^x=b^y` then `x=y` , we get:


`3x-10=-12x+2`


Add `12x` on both sides of the equation.


`3x-10+12x=-12x+2+12x`


`15x-10=2`


Add `10` on both sides of the equation.


`15x-10+10=2+10`


`15x=12`


Divide both sides by `15` .


`(15x)/15=12/15`


`x=12/15`


Simplify.


`x=4/5`


Checking: Plug-in `x=4/5` on `10^(3x-10)=(1/100)^(6x-1)` .


`10^(3*(4/5)-10)=?(1/100)^(6*(4/5)-1)`


`10^(12/5-10)=?(1/100)^(24/5-1)`


`10^(12/5-50/5)=?(1/100)^(24/5-5/5)`


`10^((-38)/5)=?(1/100)^(19/5)`


`10^((-38)/5)=?(10^(-2))^(19/5)`


`10^((-38)/5)=?10^((-2)*19/5)`


`10^((-38)/5)=10^((-38)/5) `   TRUE


Thus, the `x=4/5`  is the real exact solution of the equation `10^(3x-10)=(1/100)^(6x-1)` . 

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...