To apply Root test on a series `sum a_n` , we determine the limit as:
`lim_(n-gtoo) root(n)(|a_n|)= L`
or
`lim_(n-gtoo) |a_n|^(1/n)= L`
Then, we follow the conditions:
a) `Llt1` then the series is absolutely convergent.
b) `Lgt1` then the series is divergent.
c) `L=1` or does not exist then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
In order to apply Root Test in determining the...
To apply Root test on a series `sum a_n` , we determine the limit as:
`lim_(n-gtoo) root(n)(|a_n|)= L`
or
`lim_(n-gtoo) |a_n|^(1/n)= L`
Then, we follow the conditions:
a) `Llt1` then the series is absolutely convergent.
b) `Lgt1` then the series is divergent.
c) `L=1` or does not exist then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
In order to apply Root Test in determining the convergence or divergence of the series `sum_(n=1)^oo (1/n -1/n^2)^n` , we let: `a_n =(1/n -1/n^2)^n.`
We set-up the limit as:
`lim_(n-gtoo) |(1/n -1/n^2)^n|^(1/n) =lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n) `
Apply the Law of Exponents:`(x^n)^m= x^(n*m)` .
`lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n) =lim_(n-gtoo) (1/n -1/n^2)^(n*1/n)`
`=lim_(n-gtoo) (1/n -1/n^2)^(n/n)`
`=lim_(n-gtoo) (1/n -1/n^2)^1`
`=lim_(n-gtoo) (1/n -1/n^2)`
Evaluate the limit by applying the limit property: `lim_(x-gta)[(f(x))-(g(x))] =lim_(x-gta) f(x) -lim_(x-gta) g(x)` .
`lim_(n-gtoo) (1/n -1/n^2)=lim_(n-gtoo) 1/n -lim_(n-gtoo) 1/n^2`
` = 1/oo - 1/oo^2`
` = 1/oo - 1/oo`
` = 0 -0`
` = 0`
The limit value `L=0` satisfies the condition: `L lt1` since `0lt1` .
Conclusion: The series `sum_(n=1)^oo (1/n -1/n^2)^n` is absolutely convergent.
No comments:
Post a Comment