Monday, 14 August 2017

`r=1-sintheta` Find the points of horizontal and vertical tangency (if any) to the polar curve.

`r=1-sin theta`

To solve, express the polar equation in parametric form. To convert it to parametric equation, apply the formula


`x = rcos theta`


`y=r sin theta`


Plugging in `r=1-sin theta` , the formula becomes:


`x=(1-sin theta)cos theta=cos theta -sin theta cos theta`


`y = (1-sin theta)sin theta=sin theta -sin^2 theta`


So the equivalent parametric equation of `r= 1-sin theta` is:


`x=cos theta -sin theta cos theta`


`y=sin theta -sin^2 theta`


Then, take the derivative of x and y with respect to theta.


`dx/(d theta) = -sintheta - (sintheta*(-sintheta) + costheta*costheta)`


`dx/(d theta)=-sintheta+sin^2theta-cos^2theta`


`dy/(d theta) = costheta - 2sinthetacostheta`


Take note that the slope of the tangent is equal to dy/dx.


`m= (dy)/(dx)`


To get the dy/dx of a parametric equation, apply the formula:


`dy/dx = (dy/(d theta))/(dx/(d theta))`


When the tangent line is horizontal, the slope of the tangent is zero.


`0 = (dy/(d theta)) / (dx/(d theta))`


This implies that the polar curve will have a horizontal tangent when `dy/(d theta)=0` and `dx/(d theta) !=0`. 


Setting the derivative of y yields:


`dy/(d theta) = 0`


`costheta - 2sinthetacostheta=0`


`costheta(1 - 2sintheta) =0`


`costheta = 0`


`theta=pi/2,(3pi)/2`


`1-2sintheta=0`


`-2sintheta=-1`


`sintheta=1/2`


`theta=pi/6,(5pi)/6`


Take note that at `theta=pi/2` , the value of `dx/(d theta)` is zero. Since both `dy/(d theta)` and `dx/(d theta)`  are zero, the slope at this value of theta is indeterminate.


`m=0/0`   (indeterminate)


So the polar curve has horizontal tangents at:


`theta_1 = pi/6 + 2pin`


`theta_2= (5pi)/6+2pin`


`theta_3= (3pi)/2+2pin`


where n is any integer.


To determine the points `(r, theta)` , plug-in the values of theta to the polar equation.


`r=1-sin theta`


`theta_1 = pi/6 + 2pin`


`r_1=1-sin(pi/6 + 2pin)=1-sin(pi/6) = 1-1/2=1/2`


`theta_2= (5pi)/6+2pin`


`r_2=1-sin((5pi)/6+2pin)=1-sin((5pi)/6)= 1 -1/2=1/2`


`theta_3= (3pi)/2+2pin`


`r_3=1-sin((3pi)/2+2pin)=1-sin((3pi)/2)=1-(-1)=2`


Therefore, the polar curve has horizontal tangent at points


`(1/2, pi/6+2pin)` ,   `(1/2, (5pi)/6+2pin)` ,  and  `(2, (3pi)/2+2pin)` .


Moreover, when the tangent line is vertical, the slope is undefined.


`u n d e f i n e d =(dy/(d theta)) / (dx/(d theta))`


This implies that the polar curve will have vertical tangent when `dx/(d theta)=0` and `dy/(d theta)!=0` .


Setting the derivative of x equal to zero yields:


`dx/(d theta) = 0`


`-sintheta+sin^2theta-cos^2theta=0`


`-sin theta + sin^2 theta-(1-sin^2 theta) = 0`


`2sin^2 theta -sin theta -1=0`


`(2sin theta +1)(sin theta -1) = 0`


`2sin theta + 1=0`


`sin theta=-1/2`


`theta = (7pi)/6,(11pi)/6`


`sin theta -1=0`


`sin theta=1`


`theta=pi/2`


Take note that at `theta =pi/2` , both `dy/(d theta )` and `dx/(d theta)` are zero. So the slope is indeterminate at this value of theta.


`m=0/0`  (indeterminate)


So the polar curve has vertical tangents at:


`theta_1 =(7pi)/6+2pin`


`theta_2=(11pi)/6+2pin`


where n is any integer.


To determine the points `(r, theta)` , plug-in the values of theta to the polar equation.


`r=1-sin theta`


`theta_1=(7pi)/6+2pin`


`r_1=1-sin((7pi)/6+2pin)=1-sin((7pi)/6)=1-(-1/2)=3/2`


`theta_2=(11pi)/6+2pin`


`r_2=1-sin((11pi)/6+2pin)=1-sin((11pi)/6)=1-(-1/2)=3/2`


Therefore, the polar curve has vertical tangent at points `(3/2, (7pi)/6+2pin)` and `(3/2, (11pi)/6+2pin)` .

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...