`r=1-sin theta`
To solve, express the polar equation in parametric form. To convert it to parametric equation, apply the formula
`x = rcos theta`
`y=r sin theta`
Plugging in `r=1-sin theta` , the formula becomes:
`x=(1-sin theta)cos theta=cos theta -sin theta cos theta`
`y = (1-sin theta)sin theta=sin theta -sin^2 theta`
So the equivalent parametric equation of `r= 1-sin theta` is:
`x=cos theta -sin theta cos theta`
`y=sin theta -sin^2 theta`
Then, take the derivative of x and y with respect to theta.
`dx/(d theta) = -sintheta - (sintheta*(-sintheta) + costheta*costheta)`
`dx/(d theta)=-sintheta+sin^2theta-cos^2theta`
`dy/(d theta) = costheta - 2sinthetacostheta`
Take note that the slope of the tangent is equal to dy/dx.
`m= (dy)/(dx)`
To get the dy/dx of a parametric equation, apply the formula:
`dy/dx = (dy/(d theta))/(dx/(d theta))`
When the tangent line is horizontal, the slope of the tangent is zero.
`0 = (dy/(d theta)) / (dx/(d theta))`
This implies that the polar curve will have a horizontal tangent when `dy/(d theta)=0` and `dx/(d theta) !=0`.
Setting the derivative of y yields:
`dy/(d theta) = 0`
`costheta - 2sinthetacostheta=0`
`costheta(1 - 2sintheta) =0`
`costheta = 0`
`theta=pi/2,(3pi)/2`
`1-2sintheta=0`
`-2sintheta=-1`
`sintheta=1/2`
`theta=pi/6,(5pi)/6`
Take note that at `theta=pi/2` , the value of `dx/(d theta)` is zero. Since both `dy/(d theta)` and `dx/(d theta)` are zero, the slope at this value of theta is indeterminate.
`m=0/0` (indeterminate)
So the polar curve has horizontal tangents at:
`theta_1 = pi/6 + 2pin`
`theta_2= (5pi)/6+2pin`
`theta_3= (3pi)/2+2pin`
where n is any integer.
To determine the points `(r, theta)` , plug-in the values of theta to the polar equation.
`r=1-sin theta`
`theta_1 = pi/6 + 2pin`
`r_1=1-sin(pi/6 + 2pin)=1-sin(pi/6) = 1-1/2=1/2`
`theta_2= (5pi)/6+2pin`
`r_2=1-sin((5pi)/6+2pin)=1-sin((5pi)/6)= 1 -1/2=1/2`
`theta_3= (3pi)/2+2pin`
`r_3=1-sin((3pi)/2+2pin)=1-sin((3pi)/2)=1-(-1)=2`
Therefore, the polar curve has horizontal tangent at points
`(1/2, pi/6+2pin)` , `(1/2, (5pi)/6+2pin)` , and `(2, (3pi)/2+2pin)` .
Moreover, when the tangent line is vertical, the slope is undefined.
`u n d e f i n e d =(dy/(d theta)) / (dx/(d theta))`
This implies that the polar curve will have vertical tangent when `dx/(d theta)=0` and `dy/(d theta)!=0` .
Setting the derivative of x equal to zero yields:
`dx/(d theta) = 0`
`-sintheta+sin^2theta-cos^2theta=0`
`-sin theta + sin^2 theta-(1-sin^2 theta) = 0`
`2sin^2 theta -sin theta -1=0`
`(2sin theta +1)(sin theta -1) = 0`
`2sin theta + 1=0`
`sin theta=-1/2`
`theta = (7pi)/6,(11pi)/6`
`sin theta -1=0`
`sin theta=1`
`theta=pi/2`
Take note that at `theta =pi/2` , both `dy/(d theta )` and `dx/(d theta)` are zero. So the slope is indeterminate at this value of theta.
`m=0/0` (indeterminate)
So the polar curve has vertical tangents at:
`theta_1 =(7pi)/6+2pin`
`theta_2=(11pi)/6+2pin`
where n is any integer.
To determine the points `(r, theta)` , plug-in the values of theta to the polar equation.
`r=1-sin theta`
`theta_1=(7pi)/6+2pin`
`r_1=1-sin((7pi)/6+2pin)=1-sin((7pi)/6)=1-(-1/2)=3/2`
`theta_2=(11pi)/6+2pin`
`r_2=1-sin((11pi)/6+2pin)=1-sin((11pi)/6)=1-(-1/2)=3/2`
Therefore, the polar curve has vertical tangent at points `(3/2, (7pi)/6+2pin)` and `(3/2, (11pi)/6+2pin)` .
No comments:
Post a Comment