Wednesday, 3 May 2017

`log_6(3x)+log_6(x-1)=3` Solve the equation. Check for extraneous solutions.

To evaluate the given equation `log_6(3x)+log_6(x-1)=3` , we may apply the logarithm property: `log_b(x)+log_b(y)=log_b(x*y)` .


`log_6(3x)+log_6(x-1)=3`


`log_6(3x*(x-1))=3`


`log_6(3x^2-3x)=3`


To get rid of the "log" function, we may apply the logarithm property: `b^(log_b(x))=x` .


Raise both sides by base of `6` .


`6^(log_6(3x^2-3x))=6^3`


`3x^2-3x=216`


Subtract `216` from both sides of the equation to simplify in standard form: `ax^2+bx+c= 0` .


`3x^2-3x-216=216-216`


`3x^2-3x-216=0`


Apply factoring on the trinomial.


`3*(x + 8)*(x - 9)=0`


Apply zero-factor property to solve for...

To evaluate the given equation `log_6(3x)+log_6(x-1)=3` , we may apply the logarithm property: `log_b(x)+log_b(y)=log_b(x*y)` .


`log_6(3x)+log_6(x-1)=3`


`log_6(3x*(x-1))=3`


`log_6(3x^2-3x)=3`


To get rid of the "log" function, we may apply the logarithm property: `b^(log_b(x))=x` .


Raise both sides by base of `6` .


`6^(log_6(3x^2-3x))=6^3`


`3x^2-3x=216`


Subtract `216` from both sides of the equation to simplify in standard form: `ax^2+bx+c= 0` .


`3x^2-3x-216=216-216`


`3x^2-3x-216=0`


Apply factoring on the trinomial.


`3*(x + 8)*(x - 9)=0`


Apply zero-factor property to solve for `x` by equating each factor in terms of `x` to `0` .


`x+8-8=0-8`


`x=-8`



`x-9=0`


`x-9+9=0+9`


`x=9`


Checking: Plug-in each `x` on  `log_6(3x)+log_6(x-1)=3` .


Let `x=-8` on `log_6(3x)+log_6(x-1)=3` .


`log_6(3*(-8))+log_6(-8-1)=?3`


`log_6(-24)+log_6(-9)=?3`


undefined +undefined =?3     FALSE


Note that `log_b(x)` is undefined on `xlt=0` .


Let `x=9` on `log_6(3x)+log_6(x-1)=3` .


`log_6(3*9)+log_6(9-1)=?3`


`log_6(27)+log_6(8)=?3`


`log_6(27*8)=?3`


`log_6(216)=?3`


`log_6(6^3)=?3`


`3log_6(6)=?3`


`3*1=?3`


`3=3 `    TRUE



Thus, the `x=-8` is an extraneous solution.


The `x=9` is the only real solution of the equation `log_6(3x)+log_6(x-1)=3` .

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...