Surface area (S) obtained by rotating the curve x=g(y), c `<=` y `<=` d about y-axis is,
S=`int2pixds`
where, ds=`sqrt(1+(dx/dy)^2)dy`
We are given `y=(3x)/4 , y=3 , x=0`
`y=(3x)/4`
`=>x=(4y)/3`
`dx/dy=4/3`
`S=int_0^3(2pi)xds`
`S=2piint_0^3((4y)/3)sqrt(1+(4/3)^2)dy`
`S=2piint_0^3(4y)/3sqrt(1+16/9)dy`
`S=2piint_0^3(4y)/3sqrt(25/9)dy`
`S=2pi(4/3)(5/3)int_0^3ydy`
`S=(40pi)/9[y^2/2]_0^3`
`S=(40pi)/9[3^2/2-0^2/2]`
`S=(40pi)/9(9/2)`
`S=20pi`
So the Lateral surface area of the cone is `20pi`
Surface area (S) obtained by rotating the curve x=g(y), c `<=` y `<=` d about y-axis is,
S=`int2pixds`
where, ds=`sqrt(1+(dx/dy)^2)dy`
We are given `y=(3x)/4 , y=3 , x=0`
`y=(3x)/4`
`=>x=(4y)/3`
`dx/dy=4/3`
`S=int_0^3(2pi)xds`
`S=2piint_0^3((4y)/3)sqrt(1+(4/3)^2)dy`
`S=2piint_0^3(4y)/3sqrt(1+16/9)dy`
`S=2piint_0^3(4y)/3sqrt(25/9)dy`
`S=2pi(4/3)(5/3)int_0^3ydy`
`S=(40pi)/9[y^2/2]_0^3`
`S=(40pi)/9[3^2/2-0^2/2]`
`S=(40pi)/9(9/2)`
`S=20pi`
So the Lateral surface area of the cone is `20pi`
No comments:
Post a Comment