Sunday, 29 January 2017

A right circular cone is generated by revolving the region bounded by `y=3x/4, y=3, x=0` about the y-axis. Find the lateral surface area of the cone.

Surface area (S) obtained by rotating the curve x=g(y), c `<=`  y `<=` d about y-axis is,


S=`int2pixds`


 where, ds=`sqrt(1+(dx/dy)^2)dy`


We are given `y=(3x)/4 , y=3 , x=0`


`y=(3x)/4`


`=>x=(4y)/3`


`dx/dy=4/3`


`S=int_0^3(2pi)xds`


`S=2piint_0^3((4y)/3)sqrt(1+(4/3)^2)dy`


`S=2piint_0^3(4y)/3sqrt(1+16/9)dy`


`S=2piint_0^3(4y)/3sqrt(25/9)dy`


`S=2pi(4/3)(5/3)int_0^3ydy`


`S=(40pi)/9[y^2/2]_0^3`


`S=(40pi)/9[3^2/2-0^2/2]`


`S=(40pi)/9(9/2)`


`S=20pi`


So the Lateral surface area of the cone is `20pi`


Surface area (S) obtained by rotating the curve x=g(y), c `<=`  y `<=` d about y-axis is,


S=`int2pixds`


 where, ds=`sqrt(1+(dx/dy)^2)dy`


We are given `y=(3x)/4 , y=3 , x=0`


`y=(3x)/4`


`=>x=(4y)/3`


`dx/dy=4/3`


`S=int_0^3(2pi)xds`


`S=2piint_0^3((4y)/3)sqrt(1+(4/3)^2)dy`


`S=2piint_0^3(4y)/3sqrt(1+16/9)dy`


`S=2piint_0^3(4y)/3sqrt(25/9)dy`


`S=2pi(4/3)(5/3)int_0^3ydy`


`S=(40pi)/9[y^2/2]_0^3`


`S=(40pi)/9[3^2/2-0^2/2]`


`S=(40pi)/9(9/2)`


`S=20pi`


So the Lateral surface area of the cone is `20pi`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic&#39;s Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...