`sum_(n=1)^oo1/sqrt(n+2)`
The integral test is applicable if f is positive , continuous and decreasing function on infinite interval `[k,oo)` where `k>=1` and `a_n=f(x)` . Then the series `sum_(n=1)^ooa_n` converges or diverges if and only if the improper integral `int_1^oof(x)dx` converges or diverges.
For the given series `a_n=1/sqrt(n+2)`
Consider `f(x)=1/sqrt(x+2)`
Refer to the attached graph of the function. From the graph we observe that the function is positive and continuous for `x>=1`
Let's determine whether the function is decreasing...
`sum_(n=1)^oo1/sqrt(n+2)`
The integral test is applicable if f is positive , continuous and decreasing function on infinite interval `[k,oo)` where `k>=1` and `a_n=f(x)` . Then the series `sum_(n=1)^ooa_n` converges or diverges if and only if the improper integral `int_1^oof(x)dx` converges or diverges.
For the given series `a_n=1/sqrt(n+2)`
Consider `f(x)=1/sqrt(x+2)`
Refer to the attached graph of the function. From the graph we observe that the function is positive and continuous for `x>=1`
Let's determine whether the function is decreasing by finding the derivative `f'(x)`
`f'(x)=(-1/2)(x+2)^(-1/2-1)`
`f'(x)=-1/2(x+2)^(-3/2)`
`f'(x)=-1/(2(x+2)^(3/2))`
`f'(x)<0` which implies that the function is decreasing.
We can apply the integral test,since the function satisfies the conditions for the integral test.
Now let's determine whether the improper integral `int_1^oo1/sqrt(x+2)dx` converges or diverges.
`int_1^oo1/sqrt(x+2)dx=lim_(b->oo)int_1^b1/sqrt(x+2)dx`
Let's first evaluate the indefinite integral `int1/sqrt(x+2)dx`
Apply integral substitution:`u=x+2`
`=>du=dx`
`int1/sqrt(x+2)dx=int1/sqrt(u)du`
Apply the power rule,
`=(u^(-1/2+1)/(-1/2+1))`
`=2u^(1/2)`
`=2sqrt(u)`
Substitute back `u=x+2`
`=2sqrt(x+2)+C` where C is a constant
`int_1^oo1/sqrt(x+2)=lim_(b->oo)[2sqrt(x+2)]_1^b`
`=lim_(b->oo)[2sqrt(b+2)-2sqrt(1+2)]`
`=2lim_(b->oo)sqrt(b+2)-2sqrt(3)`
`=2(oo)-2sqrt(3)`
`=oo-2sqrt(3)`
`=oo`
Since the integral `int_1^oo1/sqrt(x+2)dx` diverges, we conclude from the integral test that the series also diverges.
No comments:
Post a Comment