`intx/sqrt(x^2-6x+5)dx`
Let's complete the square of the denominator of the integrand,
`=intx/sqrt((x-3)^2-4)dx`
Now apply integral substitution:`u=x-3`
`=>du=1dx`
`=int(u+3)/sqrt(u^2-2^2)du`
Now apply the sum rule,
`=intu/sqrt(u^2-2^2)du+int3/sqrt(u^2-2^2)du`
Now let's evaluate the first integral ,
`intu/sqrt(u^2-4)du`
Apply integral substitution:`v=u^2-4`
`=>dv=2udu`
`=int1/sqrt(v)(dv)/2`
Take the constant out and apply the power rule,
`=1/2(v^(-1/2+1)/(-1/2+1))`
`=1/2(2/1)v^(1/2)`
`=sqrt(v)`
Substitute back `v=u^2-4`
`=sqrt(u^2-4)`
Now let's evaluate the second integral,
`int3/sqrt(u^2-2^2)du`
Take the constant out,
`=3int1/sqrt(u^2-2^2)du`
Use the standard integral:`int1/sqrt(x^2-a^2)dx=ln|x+sqrt(x^2-a^2)|`
`=3ln|u+sqrt(u^2-2^2)|` ,
So add the result of the...
`intx/sqrt(x^2-6x+5)dx`
Let's complete the square of the denominator of the integrand,
`=intx/sqrt((x-3)^2-4)dx`
Now apply integral substitution:`u=x-3`
`=>du=1dx`
`=int(u+3)/sqrt(u^2-2^2)du`
Now apply the sum rule,
`=intu/sqrt(u^2-2^2)du+int3/sqrt(u^2-2^2)du`
Now let's evaluate the first integral ,
`intu/sqrt(u^2-4)du`
Apply integral substitution:`v=u^2-4`
`=>dv=2udu`
`=int1/sqrt(v)(dv)/2`
Take the constant out and apply the power rule,
`=1/2(v^(-1/2+1)/(-1/2+1))`
`=1/2(2/1)v^(1/2)`
`=sqrt(v)`
Substitute back `v=u^2-4`
`=sqrt(u^2-4)`
Now let's evaluate the second integral,
`int3/sqrt(u^2-2^2)du`
Take the constant out,
`=3int1/sqrt(u^2-2^2)du`
Use the standard integral:`int1/sqrt(x^2-a^2)dx=ln|x+sqrt(x^2-a^2)|`
`=3ln|u+sqrt(u^2-2^2)|` ,
So add the result of the two integrals,
`sqrt(u^2-4)+3ln|u+sqrt(u^2-4)|`
Substitute back `u=x-3` and add a constant C to the solution,
`=sqrt((x-3)^2-4)+3ln|x-3+sqrt((x-3)^2-4)|+C`
`=sqrt(x^2-6x+9-4)+3ln|x-3+sqrt(x^2-6x+9-4)|+C`
`=sqrt(x^2-6x+5)+3ln|x-3+sqrt(x^2-6x+5)|+C`
No comments:
Post a Comment