To find a tangent line to a polar curve,`r=f(theta)` we regard `theta` as parameter and write it's parametric equations as,
`x=rcos(theta)=f(theta)cos(theta)`
`y=rsin(theta)=f(theta)sin(theta)`
We are given the polar curve `r=asin(theta)`
Now let's convert polar equation into parametric equation,
`x=asin(theta)cos(theta)`
`y=asin(theta)sin(theta)=asin^2(theta)`
Slope of the line tangent to the parametric curve is given by the derivative `dy/dx`
`dy/dx=((dy)/(d theta))/((dx)/(d theta))`
Let's take the derivative of x and y with respect to `theta`
`dx/(d theta)=a[sin(theta)d/(d theta)cos(theta)+cos(theta)d/(d theta)sin(theta)]`
`dx/(d theta)=a[sin(theta)(-sin(theta))+cos(theta)cos(theta)]`
`dx/(d theta)=a[-sin^2(theta)+cos^2(theta)]`
`dx/(d...
To find a tangent line to a polar curve,`r=f(theta)` we regard `theta` as parameter and write it's parametric equations as,
`x=rcos(theta)=f(theta)cos(theta)`
`y=rsin(theta)=f(theta)sin(theta)`
We are given the polar curve `r=asin(theta)`
Now let's convert polar equation into parametric equation,
`x=asin(theta)cos(theta)`
`y=asin(theta)sin(theta)=asin^2(theta)`
Slope of the line tangent to the parametric curve is given by the derivative `dy/dx`
`dy/dx=((dy)/(d theta))/((dx)/(d theta))`
Let's take the derivative of x and y with respect to `theta`
`dx/(d theta)=a[sin(theta)d/(d theta)cos(theta)+cos(theta)d/(d theta)sin(theta)]`
`dx/(d theta)=a[sin(theta)(-sin(theta))+cos(theta)cos(theta)]`
`dx/(d theta)=a[-sin^2(theta)+cos^2(theta)]`
`dx/(d theta)=a(cos^2(theta)-sin^2(theta))`
use the trigonometric identity:`cos(2theta)=cos^2(theta)-sin^2(theta)`
`dx/(d theta)=acos(2theta)`
`dy/(d theta)=a(2sin(theta)d/(d theta)sin(theta))`
`dy/(d theta)=a(2sin(theta)cos(theta))`
Use the trigonometric identity:`sin(2theta)=2sin(theta)cos(theta)`
`dy/(d theta)=asin(2theta)`
We locate horizontal tangents by finding the points where `dy/(d theta)=0` ( provided that `dx/(d theta)!=0` )
and vertical tangents at the points where `dx/(d theta)=0` ( provided that `dy/(d theta)!=0` )
Setting the derivative of x equal to zero for locating vertical tangents,
`dx/(d theta)=0`
`acos(2theta)=0`
`=>cos(2theta)=0`
`2theta=pi/2,(3pi)/2,(5pi)/2,(7pi)/2`
`=>theta=pi/4,(3pi)/4,(5pi)/4,(7pi)/4`
Let's find the corresponding radius r for the above angles,
For `theta=pi/4`
`r=asin(pi/4)=a/sqrt(2)`
For `theta=(3pi)/4`
`r=asin((3pi)/4)=a/sqrt(2)`
For `theta=(5pi)/4`
`r=asin((5pi)/4)=-a/sqrt(2)`
For `theta=(7pi)/4`
`r=asin((7pi)/4)=-a/sqrt(2)`
Now let's set the derivative of y equal to zero for locating horizontal tangents,
`dy/(d theta)=0`
`asin(2theta)=0`
`=>sin(2theta)=0`
`=>2theta=0,pi,2pi,3pi`
`=>theta=0,pi/2,pi,(3pi)/2`
Now, find the corresponding radius r for above angles,
For `theta=0`
`r=asin(0)=0`
For `theta=pi/2`
`r=asin(pi/2)=a`
For `theta=pi`
`r=asin(pi)=0`
For `theta=3pi/2`
`r=asin((3pi)/2)=-a`
Note: If we plot the polar curve , its a circle and it should have two horizontal and two vertical tangents. However we got four points because it depends on a, whether it's positive or negative.
For positive value of a ,
the polar curve has horizontal tangents at `(0,0),(a,pi/2)`
and vertical tangents at `(a/sqrt(2),pi/4),(a/sqrt(2),(3pi)/4)`
For negative value of a,
the polar curve has horizontal tangents at `(0,pi),(-a,(3pi)/2)`
and vertical tangents at `(-a/sqrt(2),(5pi)/4),(-a/sqrt(2),(7pi)/4)`
No comments:
Post a Comment