Monday, 9 May 2016

Find the n'th Maclaurin polynomial for the function.

Maclaurin series is a special case of Taylor series that is centered at . The expansion of the function about follows the formula:


 or



To determine the Maclaurin polynomial of degree for the given function , we may apply the formula for Maclaurin series.


To list up to , we may apply the Product rule for differentiation: and derivative property: .



Let:  then


       then



                  



            



           


           


           



           


           


           



           


           


           


Plug-in for each , we get:



         


          



           


           



           


           



           


           



           


           


Plug-in the values on the formula for Maclaurin series, we get:



       


       


       


       


       


The Maclaurin polynomial of degree for the given function will be:


 

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...