Saturday, 20 June 2015

`int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta` Find or evaluate the integral

To evaluate the integral problem:` int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta` , we may apply Weierstrass substitution or tangent half-angle substitution .


This helps to determine the indefinite integral of a rational function in terms of sine and cosine. We let:


`u = tan(theta/2)`


`sin(theta) = (2u)/(1+u^2)`


`cos(theta) =(1-u^2)/(1+u^2)`


`d theta=(2 du)/(1+u^2)`


Plug-in the values to express the integral problem in terms variable "u'.


`int 1/(1+sin(theta)+cos(theta)) d theta=int 1/(1+(2u)/(1+u^2)+(1-u^2)/(1+u^2))*(2 du)/(1+u^2)`


`=int 1/(((1+u^2)/(1+u^2)+(2u)/(1+u^2)+(1-u^2)/(1+u^2)))*(2 du)/(1+u^2)`


`=int 1/(((1+u^2+ 2u +1-u^2)/(1+u^2)))*(2...

To evaluate the integral problem:` int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta` , we may apply Weierstrass substitution or tangent half-angle substitution .


This helps to determine the indefinite integral of a rational function in terms of sine and cosine. We let:


`u = tan(theta/2)`


`sin(theta) = (2u)/(1+u^2)`


`cos(theta) =(1-u^2)/(1+u^2)`


`d theta=(2 du)/(1+u^2)`


Plug-in the values to express the integral problem in terms variable "u'.


`int 1/(1+sin(theta)+cos(theta)) d theta=int 1/(1+(2u)/(1+u^2)+(1-u^2)/(1+u^2))*(2 du)/(1+u^2)`


`=int 1/(((1+u^2)/(1+u^2)+(2u)/(1+u^2)+(1-u^2)/(1+u^2)))*(2 du)/(1+u^2)`


`=int 1/(((1+u^2+ 2u +1-u^2)/(1+u^2)))*(2 du)/(1+u^2)`


`=int 1/(((2 +2u)/(1+u^2)))*(2 du)/(1+u^2)`


`=int 1 *(1+u^2)/ (2 +2u)*(2 du)/(1+u^2)`


`=int (2 du)/ (2 +2u)`


`=int (2 du)/ (2(1 +u))`


`=int (du)/(1+u)`



From the table of indefinite integration table, we follow the integral formula for rational function as:


`int (dx)/(ax+b)=1/aln(ax+b)`


By comparing "`ax+b` " with "`1+u` or `1u +1` ", the corresponding values are: `a=1` and `b=1` . Then, the integral becomes:


`int (du)/(1+u)=1/1ln(1u+1)`


                     `=ln(u+1)`


Plug-in `u =tan(x/2)` on `ln(u+1)` , we  get:


`int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta=ln(tan(x/2)+1)|_0^(pi/2)`


Apply the definite integral formula: `F(x)|_a^b= F(b)-F(a)` .


`ln(tan(x/2)+1)|_0^(pi/2)=ln(tan(((pi/2))/2)+1)-ln(tan(0/2)+1)`


                                   `=ln(tan(pi/4)+1)-ln(tan(0)+1)`


                                   `=ln(1+1)-ln(0+1)`


                                   `=ln(2)-ln(1)`


                                   `= ln(2/1)`


                                   `=ln(2) or 0.693`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...