Tuesday, 27 January 2015

`int 1/(2-3sin(theta)) d theta` Find or evaluate the integral

`int1/(2-3sin(theta))d theta` 


Apply integral substitution:`u=tan(theta/2)`


`=>du=1/2sec^2(theta/2)d theta`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`sec^2(theta/2)=1+tan^2(theta/2)`


`sec^2(theta/2)=1+u^2`


`du=1/2(1+u^2)d theta`


`d theta=2/(1+u^2)du`


From integral substitution:`u=tan(theta/2)`


`=>sin(theta/2)=u/sqrt(u^2+1)`


`cos(theta/2)=1/sqrt(u^2+1)`


`sin(theta)=2sin(theta/2)cos(theta/2)`


`sin(theta)=2(u/sqrt(u^2+1))(1/sqrt(u^2+1))`


`sin(theta)=(2u)/(u^2+1)`


Now the integrand can be written as :


`int1/(2-3sin(theta))d theta=int1/(2-3((2u)/(u^2+1)))(2/(1+u^2))du`


`=int1/((2(u^2+1)-3(2u))/(u^2+1))(2/(1+u^2))du`


`=int2/(2u^2+2-6u)du`


`=int2/(2(u^2-3u+1))du`


`=int1/(u^2-3u+1)du`


Complete the square of the denominator,


`=int1/((u-3/2)^2-5/4)du`


Again apply integral substitution:`v=u-3/2`


`=>dv=1du`


`=int1/(v^2-(sqrt(5)/2)^2)dv`


`=int1/(-1((sqrt(5)/2)^2-v^2))dv`


Take the constant out,


`=-1int1/((sqrt(5)/2)^2-v^2)dv`


Now use the standard table integral:`int1/(a^2-x^2)dx=1/(2a)ln|(a+x)/(a-x)|+C`


`=-1(1/(2(sqrt(5)/2))ln|(sqrt(5)/2+v)/(sqrt(5)/2-v)|)+C`


`=(-1/sqrt(5))ln|(sqrt(5)+2v)/(sqrt(5)-2v)|+C`


Substitute back `v=u-3/2`


`=(-1/sqrt(5))ln|(sqrt(5)+2(u-3/2))/(sqrt(5)-2(u-3/2))|+C`


`=(-1/sqrt(5))ln|(sqrt(5)+2u-6)/(sqrt(5)-2u+6)|+C`


Substitute back `u=tan(theta/2)`


`=(-1/sqrt(5))ln|(sqrt(5)+2tan(theta/2)-6)/(sqrt(5)-2tan(theta/2)+6)|+C`


`int1/(2-3sin(theta))d theta` 


Apply integral substitution:`u=tan(theta/2)`


`=>du=1/2sec^2(theta/2)d theta`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`sec^2(theta/2)=1+tan^2(theta/2)`


`sec^2(theta/2)=1+u^2`


`du=1/2(1+u^2)d theta`


`d theta=2/(1+u^2)du`


From integral substitution:`u=tan(theta/2)`


`=>sin(theta/2)=u/sqrt(u^2+1)`


`cos(theta/2)=1/sqrt(u^2+1)`


`sin(theta)=2sin(theta/2)cos(theta/2)`


`sin(theta)=2(u/sqrt(u^2+1))(1/sqrt(u^2+1))`


`sin(theta)=(2u)/(u^2+1)`


Now the integrand can be written as :


`int1/(2-3sin(theta))d theta=int1/(2-3((2u)/(u^2+1)))(2/(1+u^2))du`


`=int1/((2(u^2+1)-3(2u))/(u^2+1))(2/(1+u^2))du`


`=int2/(2u^2+2-6u)du`


`=int2/(2(u^2-3u+1))du`


`=int1/(u^2-3u+1)du`


Complete the square of the denominator,


`=int1/((u-3/2)^2-5/4)du`


Again apply integral substitution:`v=u-3/2`


`=>dv=1du`


`=int1/(v^2-(sqrt(5)/2)^2)dv`


`=int1/(-1((sqrt(5)/2)^2-v^2))dv`


Take the constant out,


`=-1int1/((sqrt(5)/2)^2-v^2)dv`


Now use the standard table integral:`int1/(a^2-x^2)dx=1/(2a)ln|(a+x)/(a-x)|+C`


`=-1(1/(2(sqrt(5)/2))ln|(sqrt(5)/2+v)/(sqrt(5)/2-v)|)+C`


`=(-1/sqrt(5))ln|(sqrt(5)+2v)/(sqrt(5)-2v)|+C`


Substitute back `v=u-3/2`


`=(-1/sqrt(5))ln|(sqrt(5)+2(u-3/2))/(sqrt(5)-2(u-3/2))|+C`


`=(-1/sqrt(5))ln|(sqrt(5)+2u-6)/(sqrt(5)-2u+6)|+C`


Substitute back `u=tan(theta/2)`


`=(-1/sqrt(5))ln|(sqrt(5)+2tan(theta/2)-6)/(sqrt(5)-2tan(theta/2)+6)|+C`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...