Given to solve,
`lim_(x->0) ((sin ax)/(sin bx))`
as `x->0` then the `((sin ax)/(sin bx)) =sin(0)/sin(0) =0/0` form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->0) ((sin ax)/(sin bx))`
=`lim_(x->0) ((sin ax)')/((sin bx)')`
...
Given to solve,
`lim_(x->0) ((sin ax)/(sin bx))`
as `x->0` then the `((sin ax)/(sin bx)) =sin(0)/sin(0) =0/0` form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->0) ((sin ax)/(sin bx))`
=`lim_(x->0) ((sin ax)')/((sin bx)')`
=`lim_(x->0) ((cos ax)(a))/((cos bx)(b))`
upon plugging the value of `x= 0` we get
=`((cos a(0))(a))/((cos b(0))(b))`
= `(a/b) (cos 0/cos 0)`
= `(a/b) (1/1)`
= `(a/b)`
No comments:
Post a Comment