Saturday, 25 October 2014

Determine the convergence or divergence of the series.

We may apply the Ratio Test to determine the convergence or divergence of the series .


 In Ratio test, we determine the limit as:


 


  Then, we follow the conditions:


 a) then the series is absolutely convergent


 b) then the series is divergent.


 c) or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.



...

We may apply the Ratio Test to determine the convergence or divergence of the series .


 In Ratio test, we determine the limit as:


 


  Then, we follow the conditions:


 a) then the series is absolutely convergent


 b) then the series is divergent.


 c) or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.



For the series , we have .


Then, we may let


 We set up the limit as:



  To simplify the function, we flip the bottom and proceed to multiplication:



Apply Law of Exponent: and



Cancel out the common factors and .





Applying  , we get:







 The limit value   satisfies the condition: .


 Therefore, the series  is absolutely convergent.

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...