Given to solve ,
`lim_(x->oo) x^3/e^(x^2)`
upon `x` tends to` oo` we get `x^3/e^(x^2) = oo/oo`
so, by applying the L'Hopital Rule we get
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->oo) x^3/e^(x^2)`
upon using the L'Hopital Rule
=`lim_(x->oo) ((x^3)')/((e^(x^2))')`
=`lim_(x->oo) (3x^2)/(e^(x^2)(2x))`
=>`lim_(x->oo) (3x)/(e^(x^2)(2))`
now...
Given to solve ,
`lim_(x->oo) x^3/e^(x^2)`
upon `x` tends to` oo` we get `x^3/e^(x^2) = oo/oo`
so, by applying the L'Hopital Rule we get
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->oo) x^3/e^(x^2)`
upon using the L'Hopital Rule
=`lim_(x->oo) ((x^3)')/((e^(x^2))')`
=`lim_(x->oo) (3x^2)/(e^(x^2)(2x))`
=>`lim_(x->oo) (3x)/(e^(x^2)(2))`
now on` x-> oo` we get `(3x)/(e^(x^2)(2)) =oo/oo`
so,again by applying the L'Hopital Rule we get
`lim_(x->oo) (3x)/(e^(x^2)(2))`
=`lim_(x->oo) ((3x)')/((e^(x^2)(2))')`
=`lim_(x->oo) (3)/(e^(x^2)(2)(2x))`
=`lim_(x->oo) (3)/(e^(x^2) (4x))`
now as `x-> oo`
`3/(e^(x^2) (4x)) =3/(e^(oo^2) (4(oo))) =0`
so
`lim_(x->oo) (3)/((e^(x^2) (4x)))` `=0`
now we can state that
`lim_(x->oo) x^3/e^(x^2)` `=0`
No comments:
Post a Comment