Tuesday, 28 October 2014

`lim_(x->oo)x^3/e^(x^2)` Evaluate the limit, using L’Hôpital’s Rule if necessary.

Given to solve ,


`lim_(x->oo) x^3/e^(x^2)`


upon `x` tends to` oo` we get `x^3/e^(x^2) = oo/oo`


so, by applying the L'Hopital Rule we get


as for the general equation it is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now evaluating


`lim_(x->oo) x^3/e^(x^2)`


upon using the L'Hopital Rule


=`lim_(x->oo) ((x^3)')/((e^(x^2))')`


=`lim_(x->oo) (3x^2)/(e^(x^2)(2x))`


=>`lim_(x->oo) (3x)/(e^(x^2)(2))`


now...

Given to solve ,


`lim_(x->oo) x^3/e^(x^2)`


upon `x` tends to` oo` we get `x^3/e^(x^2) = oo/oo`


so, by applying the L'Hopital Rule we get


as for the general equation it is as follows


`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.


`lim_(x->a) (f'(x))/(g'(x))`



so , now evaluating


`lim_(x->oo) x^3/e^(x^2)`


upon using the L'Hopital Rule


=`lim_(x->oo) ((x^3)')/((e^(x^2))')`


=`lim_(x->oo) (3x^2)/(e^(x^2)(2x))`


=>`lim_(x->oo) (3x)/(e^(x^2)(2))`


now on` x-> oo` we get `(3x)/(e^(x^2)(2)) =oo/oo`


so,again by applying the L'Hopital Rule we get


`lim_(x->oo) (3x)/(e^(x^2)(2))`


=`lim_(x->oo) ((3x)')/((e^(x^2)(2))')`


=`lim_(x->oo) (3)/(e^(x^2)(2)(2x))`


=`lim_(x->oo) (3)/(e^(x^2) (4x))`


now as `x-> oo`


`3/(e^(x^2) (4x)) =3/(e^(oo^2) (4(oo))) =0`


so


`lim_(x->oo) (3)/((e^(x^2) (4x)))` `=0`


now we can state that


`lim_(x->oo) x^3/e^(x^2)` `=0`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...