To evaluate the given complex fraction ` (1/x-x/(x^(-1)+1))/(5/x)` , we may simplify first the part `x/(x^(-1)+1)` .
Apply Law of Exponent: `x^(-n)=1/x^n` .
Let` x^(-1)= 1/x^1` or ` 1/x` .
`x/(1/x+1)`
Let `1=x/x` to be able to combine similar fractions.
`x/(1/x+x/x)`
`x/((1+x)/x)`
Flip the fraction at the bottom to proceed to multiplication.
`x*x/(1+x)`
`x^2/(1+x)`
Apply `x/(x^(-1)+1)=x^2/(1+x)` , we get:
`(1/x-x/(x^(-1)+1))/(5/x)`
`(1/x-x^2/(1+x))/(5/x)`
Determine the LCD or least common denominator.
The denominators are `x` and `(1+x)` . Both are distinct...
To evaluate the given complex fraction ` (1/x-x/(x^(-1)+1))/(5/x)` , we may simplify first the part `x/(x^(-1)+1)` .
Apply Law of Exponent: `x^(-n)=1/x^n` .
Let` x^(-1)= 1/x^1` or ` 1/x` .
`x/(1/x+1)`
Let `1=x/x` to be able to combine similar fractions.
`x/(1/x+x/x)`
`x/((1+x)/x)`
Flip the fraction at the bottom to proceed to multiplication.
`x*x/(1+x)`
`x^2/(1+x)`
Apply `x/(x^(-1)+1)=x^2/(1+x)` , we get:
`(1/x-x/(x^(-1)+1))/(5/x)`
`(1/x-x^2/(1+x))/(5/x)`
Determine the LCD or least common denominator.
The denominators are `x` and `(1+x)` . Both are distinct factors.
Thus, we get the LCD by getting the product of the distinct factors from denominator side of each term.
`LCD =x*(1+x) or x+x^2`
Maintain the factored form of the LCD for easier cancellation of common factors on each term.
Multiply each term by the `LCD=x*(1+x)` .
`(1/x*x*(1+x)-x^2/(1+x)*x*(1+x))/((5/x)x*(1+x))`
Cancel out common factors to get rid of the denominators.
`(1*(1+x)-x^2*x)/(5*(1+x))`
Apply distribution property.
`(1+x-x^3)/(5+5x)`
or` -(x^3-1-x)/(5x+5)`
The complex fraction `(1/x-x/(x^(-1)+1))/(5/x)` simplifies to `(1+x-x^3)/(5+5x)`
No comments:
Post a Comment