Monday 25 November 2013

`sum_(n=0)^oo n!(x/2)^n` Find the values of x for which the series converges.

For the power series `sum_(n=0)^oo n!(x/2)^n,` we may apply Ratio Test.


In Ratio test, we determine the limit as:


`lim_(n-gtoo)|a_(n+1)/a_n| = L`


or


`lim_(n-gtoo)|a_(n+1)*1/a_n| = L`


 Then ,we follow the conditions:


a) `L lt1` then the series converges absolutely


b) `Lgt1` then the series diverges


c) `L=1 ` or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.


The given power series `sum_(n=0)^oo n!(x/2)^n` has:


`a_n =n!(x/2)^n`


Then,


...

For the power series `sum_(n=0)^oo n!(x/2)^n,` we may apply Ratio Test.


In Ratio test, we determine the limit as:


`lim_(n-gtoo)|a_(n+1)/a_n| = L`


or


`lim_(n-gtoo)|a_(n+1)*1/a_n| = L`


 Then ,we follow the conditions:


a) `L lt1` then the series converges absolutely


b) `Lgt1` then the series diverges


c) `L=1 ` or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.


The given power series `sum_(n=0)^oo n!(x/2)^n` has:


`a_n =n!(x/2)^n`


Then,


`1/a_n=1/(n!)(2/x)^n`


       ` =1/(n!)(2^n/x^n)`


       ` =2^n/((n!)x^n)`


`a_(n+1) =(n+1)!(x/2)^(n+1)`


            ` = (n+1)(n!) x^(n+1)/2^(n+1)`


           ` = (n+1)(n!)(x^n*x)/(2^n*2)`


           ` =((n+1)(n!)*x^n*x)/(2^n*2))`


Applying the Ratio test on the power series, we set-up the limit as:


`lim_(n-gtoo) |((n+1)(n!)*x^n*x)/(2^n*2)*2^n/((n!)x^n)|`


Cancel out common factors: `x^n,` `n!` , and `2^n` .


`lim_(n-gtoo) |((n+1)x)/2|`


Evaluate the limit.


`lim_(n-gtoo) |((n+1)*x)/2| = |x/2|lim_(n-gtoo) |n+1|`


                            ` = |x/2|* oo`


                            ` = oo `       


The limit value `L= oo ` satisfies `Lgt 1` for all `x.`


Therefore,  the power series `sum_(n=0)^oo n!(x/2)^n`  diverges for all `x` .


There is no interval for convergence.


Note: The radius of convergence is `0` . The `x=0` satisfy the convergence at points where `n!(x/2)^n=0` .

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...