Tuesday, 12 November 2013

`int cosx/sqrt(sin^2x+1) dx` Use integration tables to find the indefinite integral.

Recall that indefinite integral follows: `int f(x) dx = F(x)+C`


where:


`f(x)` as the integrand function


`F(x) ` as the antiderivative of `f(x)`


`C` as constant of integration.


To evaluate given integral problem: `int cos(x)/sqrt(sin^2(x)+1)dx` or `int (cos(x)dx)/sqrt(sin^2(x)+1)` , we may apply u-substitution by letting:


`u = sin(x)` then `du =cos(x) dx` .


Plug-in the values ,  the integral becomes:


`int (cos(x)dx)/sqrt(sin^2(x)+1)=int (du)/sqrt(u^2+1)` or `int (du)/sqrt(u^2+1^2)`


The integral resembles one of the formulas from the integration table for ...

Recall that indefinite integral follows: `int f(x) dx = F(x)+C`


where:


`f(x)` as the integrand function


`F(x) ` as the antiderivative of `f(x)`


`C` as constant of integration.


To evaluate given integral problem: `int cos(x)/sqrt(sin^2(x)+1)dx` or `int (cos(x)dx)/sqrt(sin^2(x)+1)` , we may apply u-substitution by letting:


`u = sin(x)` then `du =cos(x) dx` .


Plug-in the values ,  the integral becomes:


`int (cos(x)dx)/sqrt(sin^2(x)+1)=int (du)/sqrt(u^2+1)` or `int (du)/sqrt(u^2+1^2)`


The integral resembles one of the formulas from the integration table for rational function with roots. We follow:


`int (dx)/sqrt(x^2+a^2) = ln|x+sqrt(x^2+a^2)|+C`


By comparing `x^2+a^2` with `u^2+1^2` , we determine the corresponding values as: x=u and a=1.


Applying the values on the integral formula for rational function with roots, we get:


`int (du)/sqrt(u^2+1^2)=ln|u+sqrt(u^2+1^2)| +C`


                                `=ln|u+sqrt(u^2+1)| +C`


Plug-in `u = sin(x)` on  `ln|u+sqrt(u^2+1)| +C` , we get the indefinite integral as:


`int cos(x)/sqrt(sin^2(x)+1)dx=ln|sin(x)+sqrt(sin^2(x)+1)| +C`



 Aside from this, we can also consider the another formula from integration table:


`int 1/sqrt(u^2+1)du = arcsinh(u) +C`


Plug-in `u = sin(x) ` on `arcsinh(u) +C` , we get another form of indefinite integral as:


`int cos(x)/sqrt(sin^2(x)+1)dx=arcsinh(sin(x)) +C`


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...