Monday, 26 August 2013

Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of about a single point. It is represented by infinite sum of centered at . The general formula for Taylor series is:


or



To apply the definition of Taylor series for the given function , we list using  the derivative formula for trigonometric function: and  .


Let then .




           


           



           


           


           



           


            


           



            


            


           


 


            


            


            


 Plug-in on each , we get:


 


         


         


 


           


           


             


 


           


            


            


 


            


            


            


 


            


            


             


 


            


            


            


 Plug-in the values on the formula for Taylor series, we get:


 


 


 






The Taylor series for the given function centered at will be:


No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...