Maclaurin series is a special case of Taylor series that is centered at `a=0` . The expansion of the function about 0 follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin polynomial of degree `n=5` for the given function `f(x)=e^(-x)` , we may apply the formula for Maclaurin series..
To list `f^n(x)` , we may apply derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)` .
Let `u =-x`...
Maclaurin series is a special case of Taylor series that is centered at `a=0` . The expansion of the function about 0 follows the formula:
`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`
or
`f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`
To determine the Maclaurin polynomial of degree `n=5` for the given function `f(x)=e^(-x)` , we may apply the formula for Maclaurin series..
To list `f^n(x)` , we may apply derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)` .
Let `u =-x` then `(du)/(dx)= -1`
Applying the values on the derivative formula for exponential function, we get:
`d/(dx) e^(-x) = e^(-x) *(-1)`
`= -e^(-x)`
Applying `d/(dx) e^(-x)= -e^(-x)` for each `f^n(x)` , we get:
`f'(x) = d/(dx) e^(-x)`
`=-e^(-x)`
`f^2(x) = d/(dx) (- e^(-x))`
`=-1 *d/(dx) e^(-x)`
`=-1 *(-e^(-x))`
`=e^(-x)`
`f^3(x) = d/(dx) e^(-x)`
`=-e^(-x)`
`f^4(x) = d/(dx) (- e^(-x))`
`=-1 *d/(dx) e^(-x)`
`=-1 *(-e^(-x))`
`=e^(-x)`
`f^5(x) = d/(dx) e^(-x)`
`=-e^(-x)`
Plug-in `x=0` , we get:
`f(0) =e^(-0) =1`
`f'(0) =-e^(-0)=-1`
`f^2(0) =e^(-0)=1`
`f^3(0) =-e^(-0)=-1`
`f^4(0) =e^(-0)=1`
`f^5(0) =-e^(-0)=-1`
Note: `e^(-0)=e^0 =1` .
Plug-in the values on the formula for Maclaurin series, we get:
`f(x)=sum_(n=0)^5 (f^n(0))/(n!) x^n`
`= 1+(-1)/(1!)x+1/(2!)x^2+(-1)/(3!)x^3+1/(4!)x^4+(-1)/(5!)x^5`
`= 1-1/1x+1/2x^2-1/6x^3+1/24x^4-1/120x^5`
`= 1-x+x^2/2-x^3/6+x^4/24 -x^5/120`
The Maclaurin polynomial of degree n=5 for the given function `f(x)=e^(-x)` will be:
`P_5(x)=1-x+x^2/2-x^3/6+x^4/24 -x^5/120`
No comments:
Post a Comment