Wednesday 21 August 2013

`f(x)=e^(-x) , n=5` Find the n'th Maclaurin polynomial for the function.

Maclaurin series is a special case of Taylor series that is centered at `a=0` . The expansion of the function about 0 follows the formula:


`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`


 or


`f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`


To determine the Maclaurin polynomial of degree `n=5` for the given function `f(x)=e^(-x)` , we may apply the formula for Maclaurin series..


To list `f^n(x)` , we may apply derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)` .


Let `u =-x`...

Maclaurin series is a special case of Taylor series that is centered at `a=0` . The expansion of the function about 0 follows the formula:


`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`


 or


`f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`


To determine the Maclaurin polynomial of degree `n=5` for the given function `f(x)=e^(-x)` , we may apply the formula for Maclaurin series..


To list `f^n(x)` , we may apply derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)` .


Let `u =-x` then `(du)/(dx)= -1`


Applying the values on the derivative formula for exponential function, we get:


`d/(dx) e^(-x) = e^(-x) *(-1)`


                     `= -e^(-x)`


Applying `d/(dx) e^(-x)= -e^(-x)`  for each `f^n(x)` , we get:


`f'(x) = d/(dx) e^(-x)`


            `=-e^(-x)`


`f^2(x) = d/(dx) (- e^(-x))`


           `=-1 *d/(dx) e^(-x)`


           `=-1 *(-e^(-x))`


           `=e^(-x)`


 `f^3(x) = d/(dx) e^(-x)`


            `=-e^(-x)`


`f^4(x) = d/(dx) (- e^(-x))`


           `=-1 *d/(dx) e^(-x)`


           `=-1 *(-e^(-x))`


           `=e^(-x)`


 `f^5(x) = d/(dx) e^(-x)`


            `=-e^(-x)`


Plug-in `x=0` , we get:


`f(0) =e^(-0) =1`


`f'(0) =-e^(-0)=-1`


`f^2(0) =e^(-0)=1`


`f^3(0) =-e^(-0)=-1`


`f^4(0) =e^(-0)=1`


`f^5(0) =-e^(-0)=-1`


Note: `e^(-0)=e^0 =1` .


Plug-in the values on the formula for Maclaurin series, we get:


`f(x)=sum_(n=0)^5 (f^n(0))/(n!) x^n`


       `= 1+(-1)/(1!)x+1/(2!)x^2+(-1)/(3!)x^3+1/(4!)x^4+(-1)/(5!)x^5`


       `= 1-1/1x+1/2x^2-1/6x^3+1/24x^4-1/120x^5`


        `= 1-x+x^2/2-x^3/6+x^4/24 -x^5/120`


The Maclaurin polynomial of degree n=5 for the given function `f(x)=e^(-x)` will be:


`P_5(x)=1-x+x^2/2-x^3/6+x^4/24 -x^5/120`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...