Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`
where: `f(x) ` as the integrand
`F(x)` as the anti-derivative function
`C` as the arbitrary constant known as constant of integration
For the given problem `int sin(2x)cos(4x) dx` or `intcos(4x)sin(2x) dx` has a integrand in a form of trigonometric function. To evaluate this, we apply the identity:
`cos(A)sin(B) =[sin(A+B) -sin(A-B)]/2`
The integral becomes:
`int cos(4x)sin(2x) dx = int[sin(4x+2x) -sin(4x-2x)]/2dx`
Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .
`int [sin(4x+2x) -sin(4x-2x)]/2dx = 1/2int[sin(4x+2x) -sin(4x-2x)]dx`
Apply the basic integration property: `int (u+v) dx = int (u) dx + int (v) dx` .
`1/2 *[int sin(4x+2x)dx+int sin(4x-2x)dx]`
Then apply u-substitution to be able to apply integration formula for cosine function: `int sin(u) du= -cos(u) +C` .
For the integral:`int sin(4x+2x)dx` , we let `u = 4x+2x =6x` then `du= 6 dx` or `(du)/6 =dx` .
`int sin(4x+2x)dx=intsin(6x) dx`
`=intsin(u) *(du)/6`
`= 1/6 int sin(u)du`
`=-1/6cos(u) +C`
Plug-in `u =6x ` on `-1/6 cos(u) +C` , we get:
`int sin(4x+2x)dx= -1/6 cos(6x) +C`
For the integral: `intsin(4x-2x)dx` , we let` u = 4x-2x =2x` then `du= 2 dx` or `(du)/2 =dx` .
`intsin(4x-2x)dx=intsin(2x) dx`
`=intsin(u) *(du)/2`
`= 1/2 int sin(u)du`
`= -1/2cos(u) +C`
Plug-in `u =2x` on `-1/2 cos(u) +C` , we get:
`intsin(4x-2x)dx= -1/2 cos(2x) +C`
Combing the results, we get the indefinite integral as:
`intcos(4x)sin(2x) dx= 1/2*[ -1/6 cos(6x) -(-1/2 cos(2x))] +C`
or `-1/12 cos(6x) +1/4 cos(2x) +C`
No comments:
Post a Comment