The series can be written as,
So based on the above pattern we can write the series as,
The integral test is applicable if f is positive, continuous and decreasing function on the infinite interval where
and
. Then the series converges or diverges if and only if the improper integral
converges or diverges.
For the given series
Consider
Graph of the function is attached. From the...
The series can be written as,
So based on the above pattern we can write the series as,
The integral test is applicable if f is positive, continuous and decreasing function on the infinite interval where
and
. Then the series converges or diverges if and only if the improper integral
converges or diverges.
For the given series
Consider
Graph of the function is attached. From the graph we can see that the function is positive, continuous and decreasing on the interval
Since the function satisfies the conditions for the integral test, we can apply integral test.
Now let's determine whether the corresponding improper integral converges or diverges.
Use the common integral:
Since the integral converges, we conclude from the integral test that the series also converges.
No comments:
Post a Comment