Thursday 17 April 2014

`ln2/sqrt(2)+ln3/sqrt(3)+ln4/sqrt(4)+ln5/sqrt(5)+ln6/sqrt(6)+...` Confirm that the Integral Test can be applied to the series. Then use the...

For the series: `ln(2)/sqrt(2) + ln(3)/sqrt(3)+ ln(4)/sqrt(4)+ ln(5)/sqrt(5)+ ln(6)/sqrt(6) +...`, it follows the formula `sum_(n=2)^oo ln(n)/sqrt(n)` where `a_n = ln(n)/sqrt(n)` . To confirm if the Integral test will be applicable, we let `f(x) = ln(x)/sqrt(x)` .

Graph of the function `f(x)` :


 


Maximize view: 


As shown on the graphs, `f` is positive and continuous on the finite interval `[1,oo)` . To verify if the function will eventually decreases on the given interval, we may consider derivative of the function.


Apply Quotient rule for derivative: `d/dx(u/v) = (u'* v- v'*u)/v^2` .


Let `u = ln(x)` then `u' = 1/x`


      `v = sqrt(x)` or `x^(1/2)` then `v' = 1/(2sqrt(x))`


Applying the Quotient rule, we get:


`f'(x) = (1/x*sqrt(x)-1/(2sqrt(x))*ln(x))/(sqrt(x))^2`


           `= (1/sqrt(x) - ln(x)/(2sqrt(x)))/x`


           `= ((2-ln(x))/sqrt(x))/x`


          ` =((2-ln(x))/sqrt(x))* 1/x`


          `=(2-ln(x))/(xsqrt(x)) `


 or `(2-ln(x))/x^(3/2)`


Note that `2-ln(x) lt0` for higher values of x which means ` f'(x) lt0`.


Aside from this, we may verify by solving critical values of x .


Apply First derivative test: f'(c) =0 such that x =c as critical values.


`(2-ln(x))/x^(3/2)=0`


`2-ln(x)=0`


`ln(x) =2`


`x = e^2`


`x~~7.389`


Using `f'(7) ~~0.0015` , it satisfy `f'(x) gt0` therefore the function is increasing on the left side of `x=e^2` .


Using `f'(8) ~~-0.0018` , it satisfy `f'(x) lt0 ` therefore the function is decreasing on the right side of `x=e^2` .


Then, we may conclude that the function  `f(x)` is decreasing for an interval `[8,oo)` .


This confirms that the function is ultimately positive, continuous, and decreasing for an interval `[8,oo)`  . Therefore, we may apply the Integral test. 


Note: Integral test is applicable if f is positive, continuous , and decreasing function on interval `[k, oo)` and `a_n=f(x)` . Then the series `sum_(n=k)^oo a_n ` converges if and only if the improper integral `int_k^oo f(x) dx` converges. If the integral diverges then the series also diverges.


To determine the convergence or divergence of the given series, we may apply improper integral as:


`int_8^oo ln(x)/sqrt(x)dx = lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx`


                                  or `lim_(t-gtoo)int_8^tln(x)/x^(1/2)dx`


 To determine the indefinite integral of `int_8^tln(x)/x^(1/2)dx` , we may apply integration by parts: `int u dv = uv - int v du`


`u = ln(x)` then `du = 1/x dx` . 


`dv = 1/x^(1/2) dx` then `v= int 1/x^(1/2)dx = 2sqrt(x)`


Note: To determine v, apply Power rule for integration `int x^n dx = x^(n+1)/(n+1).`


`int 1/x^(1/2)dx =int x^(-1/2)dx`


                ` =x^(-1/2+1)/(-1/2+1)`


                `=x^(1/2)/(1/2)`


                `=x^(1/2)*2/1`


                `=2x^(1/2)` or `2 sqrt(x)`


The integral becomes: 


`int_8^t ln(x)/sqrt(x) dx=ln(x) * 2 sqrt(x) - int 2sqrt(x) *1/x dx`


                    `=2sqrt(x)ln(x) - int 2x^(1/2) *x^(-1) dx`


                    `=2sqrt(x)ln(x) - int 2x^(-1/2) dx`


                   `=2sqrt(x)ln(x) - 2int x^(-1/2) dx`


                   `= [ 2sqrt(x)ln(x)- 2(2sqrt(x))]|_8^t`


                    `= [2sqrt(x)ln(x) - 4sqrt(x)]|_8^t`


Apply definite integral formula: `F(x)|_a^b = F(b) - F(a)` .


`[2sqrt(x)ln(x) - 4sqrt(x)]|_8^t =[2sqrt(t)ln(t) - 4sqrt(t)] - [2sqrt(8)ln(8) - 4sqrt(8)]`


                                        ` =2sqrt(t)ln(t) - 4sqrt(t) - 2sqrt(8)ln(8) + 4sqrt(8)`


                                        ` =2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)`


Note: `sqrt(8) = 2sqrt(2)`


Applying `int_8^t ln(x)/sqrt(x) dx=2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)` , we get:


`lim_(t-gtoo)int_2^tln(x)/sqrt(x)dx =lim_(t-gtoo) [2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)]`


         `=lim_(t-gtoo) 2sqrt(t)ln(t) - lim_(t-gtoo)4sqrt(t) - lim_(t-gtoo)4sqrt(2)ln(8) + lim_(t-gtoo) 8sqrt(2)`


         ` = oo-oo -4sqrt(2)ln(8) +8sqrt(2)`


        `=oo`


The `lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx=oo`  implies that the integral diverges.


Conclusion:


The integral `int_8^ooln(x)/sqrt(x)dx` is divergent therefore the series`sum_(n=2)^ooln(n)/sqrt(n)` must also be divergent

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...