Wednesday 12 March 2014

`int tan^5(2x)sec^4(2x) dx` Find the indefinite integral

`inttan^5(2x)sec^4(2x)dx`


Let's apply integral substitution:`u=2x`


`(du)=2dx`


`inttan^5(2x)sec^4(2x)dx=inttan^5(u)sec^4(u)(du)/2`


Take the constant out and rewrite the integral as,


`=1/2intsec^2(u)sec^2(u)tan^5(u)du`


Now use the trigonometric identity :`sec^2(x)=1+tan^2(x)`


`=1/2int(1+tan^2(u))sec^2(u)tan^5(u)du`


Again apply the integral substitution:`v=tan(u)`


`dv=sec^2(u)du`


`=1/2int(1+v^2)v^5dv`


`=1/2int(v^5+v^7)dv`


apply the sum rule and power rule,


`=1/2(intv^5dv+intv^7dv)`


`=1/2{(v^(5+1)/(5+1))+(v^(7+1)/(7+1))}`


`=1/2(v^6/6+v^8/8)`


substitute back `v=tan(u)` and  `u=2x`


`=1/2((tan^6(2x))/6+(tan^8(2x))/8)`


Add a constant C to the solution,


`=1/2(1/6tan^6(2x)+1/8tan^8(2x))+C`

`inttan^5(2x)sec^4(2x)dx`


Let's apply integral substitution:`u=2x`


`(du)=2dx`


`inttan^5(2x)sec^4(2x)dx=inttan^5(u)sec^4(u)(du)/2`


Take the constant out and rewrite the integral as,


`=1/2intsec^2(u)sec^2(u)tan^5(u)du`


Now use the trigonometric identity :`sec^2(x)=1+tan^2(x)`


`=1/2int(1+tan^2(u))sec^2(u)tan^5(u)du`


Again apply the integral substitution:`v=tan(u)`


`dv=sec^2(u)du`


`=1/2int(1+v^2)v^5dv`


`=1/2int(v^5+v^7)dv`


apply the sum rule and power rule,


`=1/2(intv^5dv+intv^7dv)`


`=1/2{(v^(5+1)/(5+1))+(v^(7+1)/(7+1))}`


`=1/2(v^6/6+v^8/8)`


substitute back `v=tan(u)` and  `u=2x`


`=1/2((tan^6(2x))/6+(tan^8(2x))/8)`


Add a constant C to the solution,


`=1/2(1/6tan^6(2x)+1/8tan^8(2x))+C`

No comments:

Post a Comment

How are race, gender, and class addressed in Oliver Optic's Rich and Humble?

While class does play a role in Rich and Humble , race and class aren't addressed by William Taylor Adams (Oliver Opic's real name) ...